master
兔子 5 years ago
commit 9d047c848a

@ -0,0 +1,190 @@
package astro
import (
"errors"
"time"
"b612.me/astro/basic"
)
/*
*/
func NowJDE() float64 {
return basic.GetNowJDE()
}
/*
*/
func Date2JDE(date time.Time) float64 {
day := float64(date.Day()) + float64(date.Hour())/24.0 + float64(date.Minute())/24.0/60.0 + float64(date.Second())/24.0/3600.0 + float64(date.Nanosecond())/1000000000.0/3600.0/24.0
return basic.JDECalc(date.Year(), int(date.Month()), day)
}
/*
*/
func JDE2Date(jde float64) time.Time {
return basic.JDE2Date(jde)
}
/*
*/
func Lunar(year, month, day int) (int, int, bool, string) {
return basic.GetLunar(year, month, day)
}
/*
*/
func Solar(year, month, day int, leap bool) time.Time {
jde := basic.GetSolar(year, month, day, leap)
return JDE2Date(jde)
}
/*
jde0 JDE
lon西
lat
timezone西
aerotrue
*/
func SunRiseTime(jde, lon, lat, timezone float64, aero bool) (time.Time, error) {
var err error = nil
tz := 0.00
if aero {
tz = 1
}
tm := basic.GetSunRiseTime(jde, lon, lat, timezone, tz)
if tm == -2 {
err = errors.New("极夜")
}
if tm == -1 {
err = errors.New("极昼")
}
return JDE2Date(tm), err
}
/*
jde0 JDE
lon西
lat
timezone西
aerotrue
*/
func SunDownTime(jde, lon, lat, timezone float64, aero bool) (time.Time, error) {
var err error = nil
tz := 0.00
if aero {
tz = 1
}
tm := basic.GetSunDownTime(jde, lon, lat, timezone, tz)
if tm == -2 {
err = errors.New("极夜")
}
if tm == -1 {
err = errors.New("极昼")
}
return JDE2Date(tm), err
}
/*
jde0 JDE
lon西
lat
timezone西
angle-6 -12 -18
*/
func MorningTwilightTime(jde, lon, lat, timezone, angle float64) (time.Time, error) {
var err error = nil
tm := basic.GetAsaTime(jde, lon, lat, timezone, angle)
if tm == -2 {
err = errors.New("不存在")
}
if tm == -1 {
err = errors.New("不存在")
}
return JDE2Date(tm), err
}
/*
jde0 JDE
lon西
lat
timezone西
angle-6 -12 -18
*/
func EveningTwilightTime(jde, lon, lat, timezone, angle float64) (time.Time, error) {
var err error = nil
tm := basic.GetBanTime(jde, lon, lat, timezone, angle)
if tm == -2 {
err = errors.New("不存在")
}
if tm == -1 {
err = errors.New("不存在")
}
return JDE2Date(tm), err
}
/*
jde0 JDE
lon西
lat
timezone西
aerotrue
*/
func MoonRiseTime(jde, lon, lat, timezone float64, aero bool) (time.Time, error) {
var err error = nil
tz := 0.00
if aero {
tz = 1
}
tm := basic.GetMoonRiseTime(jde, lon, lat, timezone, tz)
if tm == -2 {
err = errors.New("极夜")
}
if tm == -1 {
err = errors.New("极昼")
}
return JDE2Date(tm), err
}
/*
jde0 JDE
lon西
lat
timezone西
aerotrue
*/
func MoonDownTime(jde, lon, lat, timezone float64, aero bool) (time.Time, error) {
var err error = nil
tz := 0.00
if aero {
tz = 1
}
tm := basic.GetMoonDownTime(jde, lon, lat, timezone, tz)
if tm == -2 {
err = errors.New("极夜")
}
if tm == -1 {
err = errors.New("极昼")
}
return JDE2Date(tm), err
}
/*
jdeUTC JDE
*/
func Phase(jde float64) float64 {
return basic.MoonLight(basic.TD2UT(jde, true))
}

@ -0,0 +1,29 @@
package basic
import (
"fmt"
"testing"
)
func Test_SunAndMoon(t *testing.T) {
jde := GetNowJDE() - 1
ra := HSunSeeRa(jde - 8.0/24.0)
dec := HSunSeeDec(jde - 8.0/24.0)
fmt.Printf("当前JDE:%.14f\n", jde)
fmt.Println("当前太阳黄经:", HSunSeeLo(jde-8.0/24.0))
fmt.Println("当前太阳赤经:", ra)
fmt.Println("当前太阳赤纬:", dec)
fmt.Println("当前太阳星座:", WhichCst(ra, dec, jde))
fmt.Println("当前黄赤交角:", EclipticObliquity(jde-8.0/24.0, true))
fmt.Println("当前日出:", JDE2Date(GetSunRiseTime(jde, 115, 32, 8, 1)))
fmt.Println("当前日落:", JDE2Date(GetSunDownTime(jde, 115, 32, 8, 1)))
fmt.Println("当前晨影 -6", JDE2Date(GetAsaTime(jde, 115, 32, 8, -6)))
fmt.Println("当前晨影 -12", JDE2Date(GetAsaTime(jde, 115, 32, 8, -12)))
fmt.Println("当前昏影 -6", JDE2Date(GetBanTime(jde, 115, 32, 8, -6)))
fmt.Println("当前昏影 -12", JDE2Date(GetBanTime(jde, 115, 32, 8, -12)))
fmt.Print("农历:")
fmt.Println(GetLunar(2019, 10, 23))
fmt.Println("当前月出:", JDE2Date(GetMoonRiseTime(jde, 115, 32, 8, 1)))
fmt.Println("当前月落:", JDE2Date(GetMoonDownTime(jde, 115, 32, 8, 1)))
fmt.Println("月相:", MoonLight(jde-8.0/24.0))
}

@ -0,0 +1,24 @@
package basic
import (
"fmt"
"testing"
"time"
)
func Test_JDECALC(t *testing.T) {
i := 10
for i > 0 {
fmt.Printf("%.18f\n", GetNowJDE())
time.Sleep(time.Second)
i--
}
}
func Test_TDUT(t *testing.T) {
fmt.Printf("%.18f\n", DeltaT(2119.5, false))
}
func Test_JDE2(t *testing.T) {
fmt.Println(JDE2Date(2458868.500))
}

@ -0,0 +1,323 @@
package basic
import (
"fmt"
"math"
"strings"
"time"
)
/*
@name:
@dec: 1582
@
*/
func JDECalc(Year, Month int, Day float64) float64 {
if Month == 1 || Month == 2 {
Year--
Month += 12
}
var tmpvarB int
tmpvar := fmt.Sprintf("%04d-%02d-%2d", Year, Month, int(math.Floor(Day)))
if strings.Compare(tmpvar, `1582-10-04`) != 1 {
tmpvarB = 0
} else {
tmpvarA := int(Year / 100)
tmpvarB = 2 - tmpvarA + int(tmpvarA/4)
}
return (math.Floor(365.25*(float64(Year)+4716.0)) + math.Floor(30.6001*float64(Month+1)) + Day + float64(tmpvarB) - 1524.5)
}
/*
@name:
*/
func GetNowJDE() (NowJDE float64) {
Time := float64(time.Now().Second())/3600.0/24.0 + float64(time.Now().Minute())/60.0/24.0 + float64(time.Now().Hour())/24.0
NowJDE = JDECalc(time.Now().Year(), int(time.Now().Month()), float64(time.Now().Day())+Time)
return
}
func dt_ext(y, jsd float64) float64 { // 二次曲线外推,用于数值外插
dy := (y - 1820) / 100.00
return -20 + jsd*dy*dy
}
func dt_cal(y float64) float64 { //传入年, 返回世界时UT与原子时力学时 TD之差, ΔT = TD - UT
dt_at := []float64{
-4000, 108371.7, -13036.80, 392.000, 0.0000,
-500, 17201.0, -627.82, 16.170, -0.3413,
-150, 12200.6, -346.41, 5.403, -0.1593,
150, 9113.8, -328.13, -1.647, 0.0377,
500, 5707.5, -391.41, 0.915, 0.3145,
900, 2203.4, -283.45, 13.034, -0.1778,
1300, 490.1, -57.35, 2.085, -0.0072,
1600, 120.0, -9.81, -1.532, 0.1403,
1700, 10.2, -0.91, 0.510, -0.0370,
1800, 13.4, -0.72, 0.202, -0.0193,
1830, 7.8, -1.81, 0.416, -0.0247,
1860, 8.3, -0.13, -0.406, 0.0292,
1880, -5.4, 0.32, -0.183, 0.0173,
1900, -2.3, 2.06, 0.169, -0.0135,
1920, 21.2, 1.69, -0.304, 0.0167,
1940, 24.2, 1.22, -0.064, 0.0031,
1960, 33.2, 0.51, 0.231, -0.0109,
1980, 51.0, 1.29, -0.026, 0.0032,
2000, 63.87, 0.1, 0, 0,
2005, 64.7, 0.4, 0, 0, //一次项记为x,则 10x=0.4秒/年*(2015-2005),解得x=0.4
2015, 69,
}
y0 := dt_at[len(dt_at)-2] //表中最后一年
t0 := dt_at[len(dt_at)-1] //表中最后一年的 deltatT
if y >= y0 {
jsd := float64(31) // sjd是y1年之后的加速度估计
// 瑞士星历表jsd=31, NASA网站jsd=32, skmap的jsd=29
if y > y0+100 {
return dt_ext(y, jsd)
}
v := dt_ext(y, jsd) //二次曲线外推
dv := dt_ext(y0, jsd) - t0 // ye年的二次外推与te的差
return (v - dv*(y0+100-y)/100)
}
d := dt_at
var i int
for i = 0; i < len(d); i += 5 {
if float64(y) < d[i+5] {
break
// 判断年所在的区间
}
}
t1 := (y - d[i]) / (d[i+5] - d[i]) * 10 //////// 三次插值, 保证精确性
t2 := t1 * t1
t3 := t2 * t1
res := d[i+1] + d[i+2]*t1 + d[i+3]*t2 + d[i+4]*t3
return (res)
}
func DeltaT(Date float64, IsJDE bool) (Result float64) { //传入年或儒略日,传出为秒
var Year float64
if IsJDE {
Year = (Date-2451545.0)/365.25 + 0.1 + 2000
} else {
Year = Date
}
if Year < 2010 {
Result = dt_cal(Year)
return
}
if Year < 2100 && Year >= 2010 {
Result = dt_cal(Year) //-3.2-(Year-2017)*0.029915;
return
}
if Year >= 2100 && Year <= 2150 {
Result = -20 + 32*(((Year-1820.0)/100.0)*((Year-1820.0)/100.0)) - 0.5628*(2150-Year)
return
}
if Year > 2150 {
//tmp=(Year-1820)/100;
//Result= -20 + 32 * tmp*tmp;
Result = dt_cal(Year)
return
}
return
}
func TD2UT(JDE float64, UT2TD bool) float64 { // true 世界时转力学时CCfalse 力学时转世界时VV
Deltat := DeltaT(JDE, true)
if UT2TD {
return JDE + Deltat/3600/24
} else {
return JDE - Deltat/3600/24
}
}
/*
* @name: JDE
*/
func JDE2Date(JD float64) time.Time {
JD = JD + 0.5
Z := float64(int(JD))
F := JD - Z
var A, B, Years, Months, Days float64
if Z < 2299161.0 {
A = Z
} else {
alpha := math.Floor((Z - 1867216.25) / 36524.25)
A = Z + 1 + alpha - math.Floor(alpha/4)
}
B = A + 1524
C := math.Floor((B - 122.1) / 365.25)
D := math.Floor(365.25 * C)
E := math.Floor((B - D) / 30.6001)
Days = B - D - math.Floor(30.6001*E) + F
if E < 14 {
Months = E - 1
}
if E == 14 || E == 15 {
Months = E - 13
}
if Months > 2 {
Years = C - 4716
}
if Months == 1 || Months == 2 {
Years = C - 4715
}
tms := (Days - math.Floor(Days)) * 24 * 3600
Days = math.Floor(Days)
tz, _ := time.LoadLocation("Local")
dates := time.Date(int(Years), time.Month(int(Months)), int(Days), 0, 0, 0, 0, tz)
dates = time.Unix(dates.Unix()+int64(tms), int64((tms-math.Floor(tms))*1000000000))
return dates
}
func GetLunar(year, month, day int) (lmonth, lday int, leap bool, result string) {
jde := JDECalc(year, month, float64(day)) //计算当前JDE时间
if month == 11 || month == 12 { //判断当前日期属于前一年周期还是后一年周期
//判断方法:当前日期与冬至日所在朔望月的关系
winterday := GetJQTime(year, 270) + 8.0/24.0 //冬至日日期(世界时,北京时间)
Fday := TD2UT(CalcMoonS(float64(year)+11.0/12.0+5.0/30.0/12.0, 0), true) + 8.0/24.0 //朔月(世界时,北京时间)
Yday := TD2UT(CalcMoonS(float64(year)+1.0, 0), true) + 8.0/24.0 //下一朔月(世界时,北京时间)
if Fday-math.Floor(Fday) > 0.5 {
Fday = math.Floor(Fday) + 0.5
} else {
Fday = math.Floor(Fday) - 0.5
}
if Yday-math.Floor(Yday) > 0.5 {
Yday = math.Floor(Yday) + 0.5
} else {
Yday = math.Floor(Yday) - 0.5
}
if winterday >= Fday && winterday < Yday && jde <= Fday {
year--
}
if winterday >= Yday && jde < Yday {
year--
}
} else {
year--
}
jieqi := GetOneYearJQ(year) //一年的节气
moon := GetOneYearMoon(float64(year)) //一年朔月日
winter1 := jieqi[1] //第一年冬至日
winter2 := jieqi[25] //第二年冬至日
for k, v := range moon {
if v-math.Floor(v) > 0.5 {
moon[k] = math.Floor(v) + 0.5
} else {
moon[k] = math.Floor(v) - 0.5
}
} //置闰月为0点
for k, v := range jieqi {
if v-math.Floor(v) > 0.5 {
jieqi[k] = math.Floor(v) + 0.5
} else {
jieqi[k] = math.Floor(v) - 0.5
}
} //置节气为0点
mooncount := 0 //年内朔望月计数
var min, max int = 20, 0 //最大最小计数
for i := 1; i < 16; i++ {
if moon[i] >= winter1 && moon[i] < winter2 {
if i <= min {
min = i
}
if i >= max {
max = i
}
mooncount++
}
}
leapmonth := 20
if mooncount == 13 { //存在闰月
j, i := 3, 1
for i = min; i <= max; i++ {
if !(moon[i] <= jieqi[j] && moon[i+1] > jieqi[j]) {
break
}
j += 2
}
leapmonth = i - min + 1
}
i := 0
for i = min - 1; i <= max; i++ {
if moon[i] > jde {
break
}
}
lmonth = i - min
var sleap bool = false
leap = false
if lmonth >= leapmonth {
sleap = true
}
if lmonth == leapmonth {
leap = true
}
if lmonth < 2 {
lmonth += 11
} else {
lmonth--
}
if sleap {
lmonth--
}
lday = int(jde-moon[i-1]) + 1
strmonth := []string{"十", "一", "二", "三", "四", "五", "六", "七", "八", "九", "十", "冬", "腊"}
strday := []string{"初", "十", "廿", "三"}
if leap {
result += "闰"
}
result += strmonth[lmonth] + "月"
if lday == 20 {
result += "二十"
} else if lday == 10 {
result += "初十"
} else {
result += strday[lday/10] + strmonth[lday%10]
}
return
}
func GetSolar(year, month, day int, leap bool) float64 {
if month < 11 {
year--
}
jieqi := GetOneYearJQ(year) //一年的节气
moon := GetOneYearMoon(float64(year)) //一年朔月日
winter1 := jieqi[1] //第一年冬至日
winter2 := jieqi[25] //第二年冬至日
for k, v := range moon {
if v-math.Floor(v) > 0.5 {
moon[k] = math.Floor(v) + 0.5
} else {
moon[k] = math.Floor(v) - 0.5
}
} //置闰月为0点
for k, v := range jieqi {
if v-math.Floor(v) > 0.5 {
jieqi[k] = math.Floor(v) + 0.5
} else {
jieqi[k] = math.Floor(v) - 0.5
}
} //置节气为0点
mooncount := 0 //年内朔望月计数
var min, max int = 20, 0 //最大最小计数
for i := 1; i < 16; i++ {
if moon[i] >= winter1 && moon[i] < winter2 {
if i <= min {
min = i
}
if i >= max {
max = i
}
mooncount++
}
}
if leap {
month++
}
if month > 10 {
month -= 11
} else {
month++
}
jde := moon[min-1+month] + float64(day) - 1
return jde
}

@ -0,0 +1,141 @@
package basic
import (
"math"
. "b612.me/astro/tools"
)
/*
*
*/
func LoToRa(lo, bo, jde float64) float64 {
ra := math.Atan2(Sin(lo)*Cos(Sita(jde)-Tan(bo)*Sin(Sita(jde))), Cos(lo))
ra = ra * 180 / math.Pi
if ra < 0 {
ra += 360
}
return ra
}
func BoToDec(lo, bo, jde float64) float64 {
dec := ArcSin(Sin(bo)*Cos(Sita(jde)) + Cos(bo)*Sin(Sita(jde))*Sin(lo))
return dec
}
/*
* st end JDE
*/
func ZuoBiaoSuiCha(ra, dec, st, end float64) (float64, float64) {
t := (end - st) / 36525.0
l := (2306.2181*t + 0.30188*t*t + 0.017998*t*t*t) / 3600
z := (2306.2181*t + 1.09468*t*t + 0.018203*t*t*t) / 3600
o := (2004.3109*t - 0.42665*t*t + 0.041833*t*t*t) / 3600
A := Cos(dec) * Sin(ra+l)
B := Cos(o)*Cos(dec)*Cos(ra+l) - Sin(o)*Sin(dec)
C := Sin(o)*Cos(dec)*Cos(ra+l) + Cos(o)*Sin(dec)
ras := math.Atan2(A, B)
ras = ras * 180 / math.Pi
if ras < 0 {
ras += 360
}
ra = ras + z
dec = ArcSin(C)
return ra, dec
}
/*
* jdeau
*/
func pcosi(lat, h float64) float64 {
b := 6356.755
a := 6378.14
u := ArcTan(b / a * Tan(lat))
//psin=b/a*Sin(u)+h/6378140*Sin(lat);
pcos := Cos(u) + h/6378140.0*Cos(lat)
return pcos
}
func psini(lat, h float64) float64 {
b := 6356.755
a := 6378.14
u := ArcTan(b / a * Tan(lat))
psin := b/a*Sin(u) + h/6378140*Sin(lat)
//pcos=Cos(u)+h/6378140*Cos(lat);
return psin
}
func ZhanXinRaDec(ra, dec, lat, lon, jd, au, h float64) (float64, float64) {
sinpi := Sin(0.0024427777777) / au
pcosi := pcosi(lat, h)
psini := psini(lat, h)
tH := Limit360(TD2UT(SeeStarTime(jd), false)*15 + lon - ra)
nra := math.Atan2(-pcosi*sinpi*Sin(tH), (Cos(dec)-pcosi*sinpi*Cos(tH))) * 180 / math.Pi
ndec := math.Atan2((Sin(dec)-psini*sinpi)*Cos(nra), (Cos(dec)-pcosi*sinpi*Cos(tH))) * 180 / math.Pi
return ra + nra, ndec
}
func ZhanXinRa(ra, dec, lat, lon, jd, au, h float64) float64 { //jd为格林尼治标准时
sinpi := Sin(0.0024427777777) / au
pcosi := pcosi(lat, h)
tH := Limit360(TD2UT(SeeStarTime(jd), false)*15 + lon - ra)
nra := math.Atan2(-pcosi*sinpi*Sin(tH), (Cos(dec)-pcosi*sinpi*Cos(tH))) * 180 / math.Pi
return ra + nra
}
func ZhanXinDec(ra, dec, lat, lon, jd, au, h float64) float64 { //jd为格林尼治标准时
sinpi := Sin(0.0024427777777) / au
pcosi := pcosi(lat, h)
psini := psini(lat, h)
tH := Limit360(TD2UT(SeeStarTime(jd), false)*15 + lon - ra)
nra := math.Atan2(-pcosi*sinpi*Sin(tH), (Cos(dec)-pcosi*sinpi*Cos(tH))) * 180 / math.Pi
ndec := math.Atan2((Sin(dec)-psini*sinpi)*Cos(nra), (Cos(dec)-pcosi*sinpi*Cos(tH))) * 180 / math.Pi
return ndec
}
func ZhanXinLo(lo, bo, lat, lon, jd, au, h float64) float64 { //jd为格林尼治标准时
C := pcosi(lat, h)
S := psini(lat, h)
sinpi := Sin(0.0024427777777) / au
ra := LoToRa(lo, bo, jd)
tH := Limit360(TD2UT(SeeStarTime(jd), false)*15 + lon - ra)
N := Cos(lo)*Cos(bo) - C*sinpi*Cos(tH)
nlo := math.Atan2(Sin(lo)*Cos(bo)-sinpi*(S*Sin(Sita(jd))+C*Cos(Sita(jd))*Sin(tH)), N) * 180 / math.Pi
return nlo
}
func ZhanXinBo(lo, bo, lat, lon, jd, au, h float64) float64 { //jd为格林尼治标准时
C := pcosi(lat, h)
S := psini(lat, h)
sinpi := Sin(0.0024427777777) / au
ra := LoToRa(lo, bo, jd)
tH := Limit360(TD2UT(SeeStarTime(jd), false)*15 + lon - ra)
N := Cos(lo)*Cos(bo) - C*sinpi*Cos(tH)
nlo := math.Atan2(Sin(lo)*Cos(bo)-sinpi*(S*Sin(Sita(jd))+C*Cos(Sita(jd))*Sin(tH)), N) * 180 / math.Pi
nbo := math.Atan2(Cos(nlo)*(Sin(bo)-sinpi*(S*Cos(Sita(jd))-C*Sin(Sita(jd))*Sin(tH))), N) * 180 / math.Pi
return nbo
}
/*
func GXCLo(lo,bo,jd float64) float64{ //光行差修正
k:=20.49552;
sunlo:=SunTrueLo(jd);
e:=Earthe(jd);
epi=earth->EarthPI(jd);
tmp=(-k*this->CosR(sunlo-lo)+e*k*this->CosR(epi-lo))/this->CosR(bo);
return tmp;
}
public function GXCBo(lo,bo,jd)
{
earth=new Earth();
k=20.49552;
sunlo=earth->SunTrueLo(jd);
e=earth->Earthe(jd);
epi=earth->EarthPI(jd);
tmp=-k*this->SinR(bo)*(this->SinR(sunlo-lo)-e*this->SinR(epi-lo));
return tmp;
}
*/

@ -0,0 +1,10 @@
package basic
import (
"fmt"
"testing"
)
func Test_LoBo(t *testing.T) {
fmt.Sprintf("%.14f", LoToRa(22, 33, 2451545.0))
}

@ -0,0 +1,147 @@
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func JupiterL(JD float64) float64 {
return planet.WherePlanet(4, 0, JD)
}
func JupiterB(JD float64) float64 {
return planet.WherePlanet(4, 1, JD)
}
func JupiterR(JD float64) float64 {
return planet.WherePlanet(4, 2, JD)
}
func AJupiterX(JD float64) float64 {
l := JupiterL(JD)
b := JupiterB(JD)
r := JupiterR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func AJupiterY(JD float64) float64 {
l := JupiterL(JD)
b := JupiterB(JD)
r := JupiterR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func AJupiterZ(JD float64) float64 {
//l := JupiterL(JD)
b := JupiterB(JD)
r := JupiterR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func AJupiterXYZ(JD float64) (float64, float64, float64) {
l := JupiterL(JD)
b := JupiterB(JD)
r := JupiterR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func JupiterSeeRa(JD float64) float64 {
lo, bo := JupiterSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
return Limit360(ra)
}
func JupiterSeeDec(JD float64) float64 {
lo, bo := JupiterSeeLoBo(JD)
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func JupiterSeeRaDec(JD float64) (float64, float64) {
lo, bo := JupiterSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return Limit360(ra), dec
}
func EarthJupiterAway(JD float64) float64 {
x, y, z := AJupiterXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func JupiterSeeLo(JD float64) float64 {
x, y, z := AJupiterXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AJupiterXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo
}
func JupiterSeeBo(JD float64) float64 {
x, y, z := AJupiterXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AJupiterXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func JupiterSeeLoBo(JD float64) (float64, float64) {
x, y, z := AJupiterXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AJupiterXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo, bo
}
func JupiterMag(JD float64) float64 {
AwaySun := JupiterR(JD)
AwayEarth := EarthJupiterAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -9.40 + 5*math.Log10(AwaySun*AwayEarth) + 0.0005*i
return FloatRound(Mag, 2)
}

@ -0,0 +1,147 @@
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func MarsL(JD float64) float64 {
return planet.WherePlanet(3, 0, JD)
}
func MarsB(JD float64) float64 {
return planet.WherePlanet(3, 1, JD)
}
func MarsR(JD float64) float64 {
return planet.WherePlanet(3, 2, JD)
}
func AMarsX(JD float64) float64 {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func AMarsY(JD float64) float64 {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func AMarsZ(JD float64) float64 {
//l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func AMarsXYZ(JD float64) (float64, float64, float64) {
l := MarsL(JD)
b := MarsB(JD)
r := MarsR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func MarsSeeRa(JD float64) float64 {
lo, bo := MarsSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
return Limit360(ra)
}
func MarsSeeDec(JD float64) float64 {
lo, bo := MarsSeeLoBo(JD)
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func MarsSeeRaDec(JD float64) (float64, float64) {
lo, bo := MarsSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return Limit360(ra), dec
}
func EarthMarsAway(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func MarsSeeLo(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo
}
func MarsSeeBo(JD float64) float64 {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func MarsSeeLoBo(JD float64) (float64, float64) {
x, y, z := AMarsXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMarsXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo, bo
}
func MarsMag(JD float64) float64 {
AwaySun := MarsR(JD)
AwayEarth := EarthMarsAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -1.52 + 5*math.Log10(AwaySun*AwayEarth) + 0.016*i
return FloatRound(Mag, 2)
}

@ -0,0 +1,147 @@
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func MercuryL(JD float64) float64 {
return planet.WherePlanet(1, 0, JD)
}
func MercuryB(JD float64) float64 {
return planet.WherePlanet(1, 1, JD)
}
func MercuryR(JD float64) float64 {
return planet.WherePlanet(1, 2, JD)
}
func AMercuryX(JD float64) float64 {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func AMercuryY(JD float64) float64 {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func AMercuryZ(JD float64) float64 {
//l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func AMercuryXYZ(JD float64) (float64, float64, float64) {
l := MercuryL(JD)
b := MercuryB(JD)
r := MercuryR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func MercurySeeRa(JD float64) float64 {
lo, bo := MercurySeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
return Limit360(ra)
}
func MercurySeeDec(JD float64) float64 {
lo, bo := MercurySeeLoBo(JD)
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func MercurySeeRaDec(JD float64) (float64, float64) {
lo, bo := MercurySeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return Limit360(ra), dec
}
func EarthMercuryAway(JD float64) float64 {
x, y, z := AMercuryXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func MercurySeeLo(JD float64) float64 {
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo
}
func MercurySeeBo(JD float64) float64 {
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func MercurySeeLoBo(JD float64) (float64, float64) {
x, y, z := AMercuryXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = AMercuryXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo, bo
}
func MercuryMag(JD float64) float64 {
AwaySun := MercuryR(JD)
AwayEarth := EarthMercuryAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -0.42 + 5*math.Log10(AwaySun*AwayEarth) + 0.0380*i - 0.000273*i*i + 0.000002*i*i*i
return FloatRound(Mag, 2)
}

File diff suppressed because one or more lines are too long

@ -0,0 +1,18 @@
package basic
import (
"fmt"
"testing"
"time"
)
func Test_MoonS(t *testing.T) {
//fmt.Println(Sita(2451547))
//fmt.Println(MoonHeight(2451547, 115, 32, 8))
a := time.Now().UnixNano()
b := GetMoonRiseTime(GetNowJDE(), 115, 32, 8, 0)
fmt.Println(time.Now().UnixNano() - a)
fmt.Println(JDE2Date((b)))
fmt.Println(time.Now().UnixNano() - a)
//fmt.Printf("%.14f", GetMoonRiseTime(2451547, 115, 32, 8, 0))
}

@ -0,0 +1,147 @@
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func NeptuneL(JD float64) float64 {
return planet.WherePlanet(7, 0, JD)
}
func NeptuneB(JD float64) float64 {
return planet.WherePlanet(7, 1, JD)
}
func NeptuneR(JD float64) float64 {
return planet.WherePlanet(7, 2, JD)
}
func ANeptuneX(JD float64) float64 {
l := NeptuneL(JD)
b := NeptuneB(JD)
r := NeptuneR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func ANeptuneY(JD float64) float64 {
l := NeptuneL(JD)
b := NeptuneB(JD)
r := NeptuneR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
return y
}
func ANeptuneZ(JD float64) float64 {
//l := NeptuneL(JD)
b := NeptuneB(JD)
r := NeptuneR(JD)
// el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
z := r*Sin(b) - er*Sin(eb)
return z
}
func ANeptuneXYZ(JD float64) (float64, float64, float64) {
l := NeptuneL(JD)
b := NeptuneB(JD)
r := NeptuneR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
y := r*Cos(b)*Sin(l) - er*Cos(eb)*Sin(el)
z := r*Sin(b) - er*Sin(eb)
return x, y, z
}
func NeptuneSeeRa(JD float64) float64 {
lo, bo := NeptuneSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
return Limit360(ra)
}
func NeptuneSeeDec(JD float64) float64 {
lo, bo := NeptuneSeeLoBo(JD)
sita := Sita(JD)
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return dec
}
func NeptuneSeeRaDec(JD float64) (float64, float64) {
lo, bo := NeptuneSeeLoBo(JD)
sita := Sita(JD)
ra := math.Atan2((Sin(lo)*Cos(sita) - Tan(bo)*Sin(sita)), Cos(lo))
ra = ra * 180 / math.Pi
dec := ArcSin(Sin(bo)*Cos(sita) + Cos(bo)*Sin(sita)*Sin(lo))
return Limit360(ra), dec
}
func EarthNeptuneAway(JD float64) float64 {
x, y, z := ANeptuneXYZ(JD)
to := math.Sqrt(x*x + y*y + z*z)
return to
}
func NeptuneSeeLo(JD float64) float64 {
x, y, z := ANeptuneXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = ANeptuneXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo
}
func NeptuneSeeBo(JD float64) float64 {
x, y, z := ANeptuneXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = ANeptuneXYZ(JD - to)
//lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
//lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
//lo+=GXCLo(lo,bo,JD);
//bo+=GXCBo(lo,bo,JD)/3600;
//lo+=HJZD(JD);
return bo
}
func NeptuneSeeLoBo(JD float64) (float64, float64) {
x, y, z := ANeptuneXYZ(JD)
to := 0.0057755183 * math.Sqrt(x*x+y*y+z*z)
x, y, z = ANeptuneXYZ(JD - to)
lo := math.Atan2(y, x)
bo := math.Atan2(z, math.Sqrt(x*x+y*y))
lo = lo * 180 / math.Pi
bo = bo * 180 / math.Pi
lo = Limit360(lo)
//lo-=GXCLo(lo,bo,JD)/3600;
//bo+=GXCBo(lo,bo,JD);
lo += HJZD(JD)
return lo, bo
}
func NeptuneMag(JD float64) float64 {
AwaySun := NeptuneR(JD)
AwayEarth := EarthNeptuneAway(JD)
Away := planet.WherePlanet(-1, 2, JD)
i := (AwaySun*AwaySun + AwayEarth*AwayEarth - Away*Away) / (2 * AwaySun * AwayEarth)
i = ArcCos(i)
Mag := -6.87 + 5*math.Log10(AwaySun*AwayEarth)
return FloatRound(Mag, 2)
}

@ -0,0 +1,15 @@
package basic
import (
"fmt"
"testing"
)
func Test_Ra(t *testing.T) {
ra, dec := UranusSeeRaDec(2456789.12345)
fmt.Printf("%.14f\n%.14f\n", ra, dec)
fmt.Println(UranusMag(2456789.12345))
ra, dec = NeptuneSeeRaDec(2456789.12345)
fmt.Printf("%.14f\n%.14f\n", ra, dec)
fmt.Println(NeptuneMag(2456789.12345))
}

@ -0,0 +1,156 @@
package basic
import (
"math"
"b612.me/astro/planet"
. "b612.me/astro/tools"
)
func SaturnL(JD float64) float64 {
return planet.WherePlanet(5, 0, JD)
}
func SaturnB(JD float64) float64 {
return planet.WherePlanet(5, 1, JD)
}
func SaturnR(JD float64) float64 {
return planet.WherePlanet(5, 2, JD)
}
func ASaturnX(JD float64) float64 {
l := SaturnL(JD)
b := SaturnB(JD)
r := SaturnR(JD)
el := planet.WherePlanet(-1, 0, JD)
eb := planet.WherePlanet(-1, 1, JD)
er := planet.WherePlanet(-1, 2, JD)
x := r*Cos(b)*Cos(l) - er*Cos(eb)*Cos(el)
return x
}
func ASaturnY(JD float64) float64 {
l := SaturnL(JD)