#include "fmt.h" size_t scan_utf8(const char* in,size_t len,uint32_t* num) { uint32_t i,k,m; const char* orig=in; if (len==0) return 0; i=(*(unsigned char*)in++); /* grab first byte */ if (i>=0xfe || /* 0xfe and 0xff are invalid encodings in utf-8 for the first byte */ (i&0xc0)==0x80) return 0; /* first bits being 10 marks continuation chars, invalid sequence for first byte */ for (k=0; i&0x80; i<<=1, ++k); /* count leading 1 bits */ if (!k) { if (num) *num=i; return 1; } if (k>len) return 0; i=(i&0xff)>>k; /* mask the leading 1 bits */ /* The next part is a little tricky. * UTF-8 says that the encoder has to choose the most efficient * encoding, and the decoder has to reject other encodings. The * background is that attackers encoded '/' not as 0x2f but as 0xc0 * 0xaf, and that evaded bad security checks just scan for the '/' * byte in pathnames. * At this point k contains the number of bytes, so k-1 is the number * of continuation bytes. For each additional continuation byte, we * gain 6 bits of storage space, but we lose one in the signalling in * the initial byte. So we have 6 + (k-1) * 5 bits total storage * space for this encoding. The minimum value for k bytes is the * maximum number for k-1 bytes plus 1. If the previous encoding has * 11 bits, its maximum value is 11 1-bits or 0x7ff, and the minimum * value we are looking for is 0x800 or 1<<11. For 2 bytes, UTF-8 can * encode 11 bits, after that each additional byte gains 5 more bits. * So for k>2, we want * 1 << (11+(k-3)*5) * or optimized to get rid of the -3 * 1 << (k*5-4) * but for k==2 the delta is 4 bits (not 5), so we want * 1 << 7 * abusing the fact that a boolean expression evaluates to 0 or 1, the * expression can be written as * 1 << (k*5-4+(k==2)) */ m=((uint32_t)1<<(k*5-4+(k==2))); while (k>1) { if ((*in&0xc0)!=0x80) return 0; i=(i<<6) | ((*in++)&0x3f); --k; } if (i #include "fmt/fmt_utf8.c" int main() { char buf[100]; uint32_t l; unsigned int i; /* first positive testing for the various lengths */ l=fmt_utf8(buf,0); assert(l == 1 && scan_utf8(buf,l+1,&l)==1 && l==0); l=fmt_utf8(buf,0x80); assert(l == 2 && scan_utf8(buf,l+1,&l)==2 && l==0x80); l=fmt_utf8(buf,0x800); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0x800); l=fmt_utf8(buf,0x10000); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x10000); l=fmt_utf8(buf,0x200000); assert(l == 5 && scan_utf8(buf,l+1,&l)==5 && l==0x200000); l=fmt_utf8(buf,0x4000000); assert(l == 6 && scan_utf8(buf,l+1,&l)==6 && l==0x4000000); /* corner cases */ l=fmt_utf8(buf,0x7f); assert(l == 1 && scan_utf8(buf,l+1,&l)==1 && l==0x7f); l=fmt_utf8(buf,0x7ff); assert(l == 2 && scan_utf8(buf,l+1,&l)==2 && l==0x7ff); l=fmt_utf8(buf,0xffff); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xffff); l=fmt_utf8(buf,0x1fffff); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x1fffff); l=fmt_utf8(buf,0x3ffffff); assert(l == 5 && scan_utf8(buf,l+1,&l)==5 && l==0x3ffffff); l=fmt_utf8(buf,0x7fffffff); assert(l == 6 && scan_utf8(buf,l+1,&l)==6 && l==0x7fffffff); /* more corner cases */ l=fmt_utf8(buf,0xd7ff); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xd7ff); l=fmt_utf8(buf,0xe000); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xe000); l=fmt_utf8(buf,0xfffd); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xfffd); l=fmt_utf8(buf,0x10ffff); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x10ffff); l=fmt_utf8(buf,0x110000); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x110000); /* now negative testing */ /* start off with some continuation bytes outside a sequence */ for (i=0x80; i<=0xbf; ++i) { buf[0]=i; assert(scan_utf8(buf,2,&l)==0); } /* now check lonely sequence start characters */ buf[1]=' '; for (i=0xc0; i<=0xfd; ++i) { buf[0]=i; assert(scan_utf8(buf,2,&l)==0); } /* FE and FF are reserved for UTF-16 endianness detection*/ assert(scan_utf8("\xfe\xff",3,&l)==0); assert(scan_utf8("\xff\xfe",3,&l)==0); /* now check some truncated sequences */ l=fmt_utf8(buf,0); assert(l == 1 && scan_utf8(buf,l-1,&l)==0); l=fmt_utf8(buf,0x80); assert(l == 2 && scan_utf8(buf,l-1,&l)==0); l=fmt_utf8(buf,0x800); assert(l == 3 && scan_utf8(buf,l-1,&l)==0); l=fmt_utf8(buf,0x10000); assert(l == 4 && scan_utf8(buf,l-1,&l)==0); l=fmt_utf8(buf,0x200000); assert(l == 5 && scan_utf8(buf,l-1,&l)==0); l=fmt_utf8(buf,0x4000000); assert(l == 6 && scan_utf8(buf,l-1,&l)==0); /* now truncate in another way */ l=fmt_utf8(buf,0x80); buf[l-1]=' '; assert(l == 2 && scan_utf8(buf,l+1,&l)==0); l=fmt_utf8(buf,0x800); buf[l-1]=' '; assert(l == 3 && scan_utf8(buf,l+1,&l)==0); l=fmt_utf8(buf,0x10000); buf[l-1]=' '; assert(l == 4 && scan_utf8(buf,l+1,&l)==0); l=fmt_utf8(buf,0x200000); buf[l-1]=' '; assert(l == 5 && scan_utf8(buf,l+1,&l)==0); l=fmt_utf8(buf,0x4000000); buf[l-1]=' '; assert(l == 6 && scan_utf8(buf,l+1,&l)==0); /* now some not minimally encoded utf-8 sequences */ assert(scan_utf8("\xc0\x80",3,&l)==0); assert(scan_utf8("\xe0\x80\x80",4,&l)==0); assert(scan_utf8("\xf0\x80\x80\x80",5,&l)==0); assert(scan_utf8("\xf8\x80\x80\x80\x80",6,&l)==0); assert(scan_utf8("\xfc\x80\x80\x80\x80\x80",7,&l)==0); return 0; } #endif