mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-27 12:46:18 +08:00
sm2/enc: use bigmod and sm2ec instead of math/big and crypto/elliptic
This commit is contained in:
parent
9c6638f30e
commit
fc8fe5c631
397
sm2/sm2.go
397
sm2/sm2.go
@ -21,7 +21,6 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/emmansun/gmsm/ecdh"
|
||||
@ -96,19 +95,6 @@ func NewPlainDecrypterOpts(splicingOrder ciphertextSplicingOrder) *DecrypterOpts
|
||||
return &DecrypterOpts{ENCODING_PLAIN, splicingOrder}
|
||||
}
|
||||
|
||||
func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte {
|
||||
switch mode {
|
||||
case MarshalCompressed:
|
||||
return elliptic.MarshalCompressed(curve, x, y)
|
||||
case MarshalHybrid:
|
||||
buffer := elliptic.Marshal(curve, x, y)
|
||||
buffer[0] = byte(y.Bit(0)) | hybrid06
|
||||
return buffer
|
||||
default:
|
||||
return elliptic.Marshal(curve, x, y)
|
||||
}
|
||||
}
|
||||
|
||||
func toBytes(curve elliptic.Curve, value *big.Int) []byte {
|
||||
byteLen := (curve.Params().BitSize + 7) >> 3
|
||||
result := make([]byte, byteLen)
|
||||
@ -116,43 +102,6 @@ func toBytes(curve elliptic.Curve, value *big.Int) []byte {
|
||||
return result
|
||||
}
|
||||
|
||||
func bytes2Point(curve elliptic.Curve, bytes []byte) (*big.Int, *big.Int, int, error) {
|
||||
if len(bytes) < 1+(curve.Params().BitSize/8) {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid bytes length %d", len(bytes))
|
||||
}
|
||||
format := bytes[0]
|
||||
byteLen := (curve.Params().BitSize + 7) >> 3
|
||||
switch format {
|
||||
case uncompressed, hybrid06, hybrid07: // what's the hybrid format purpose?
|
||||
if len(bytes) < 1+byteLen*2 {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid point uncompressed/hybrid form bytes length %d", len(bytes))
|
||||
}
|
||||
data := make([]byte, 1+byteLen*2)
|
||||
data[0] = uncompressed
|
||||
copy(data[1:], bytes[1:1+byteLen*2])
|
||||
x, y := sm2ec.Unmarshal(curve, data)
|
||||
if x == nil || y == nil {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
|
||||
}
|
||||
return x, y, 1 + byteLen*2, nil
|
||||
case compressed02, compressed03:
|
||||
if len(bytes) < 1+byteLen {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid point compressed form bytes length %d", len(bytes))
|
||||
}
|
||||
// Make sure it's NIST curve or SM2 P-256 curve
|
||||
if strings.HasPrefix(curve.Params().Name, "P-") || strings.EqualFold(curve.Params().Name, sm2ec.P256().Params().Name) {
|
||||
// y² = x³ - 3x + b, prime curves
|
||||
x, y := sm2ec.UnmarshalCompressed(curve, bytes[:1+byteLen])
|
||||
if x == nil || y == nil {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
|
||||
}
|
||||
return x, y, 1 + byteLen, nil
|
||||
}
|
||||
return nil, nil, 0, fmt.Errorf("sm2: unsupport point form %d, curve %s", format, curve.Params().Name)
|
||||
}
|
||||
return nil, nil, 0, fmt.Errorf("sm2: unknown point form %d", format)
|
||||
}
|
||||
|
||||
var defaultEncrypterOpts = &EncrypterOpts{ENCODING_PLAIN, MarshalUncompressed, C1C3C2}
|
||||
|
||||
var ASN1EncrypterOpts = &EncrypterOpts{ENCODING_ASN1, MarshalUncompressed, C1C3C2}
|
||||
@ -245,25 +194,6 @@ func (priv *PrivateKey) Decrypt(rand io.Reader, msg []byte, opts crypto.Decrypte
|
||||
|
||||
const maxRetryLimit = 100
|
||||
|
||||
func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte {
|
||||
md := sm3.New()
|
||||
md.Write(toBytes(curve, x2))
|
||||
md.Write(msg)
|
||||
md.Write(toBytes(curve, y2))
|
||||
return md.Sum(nil)
|
||||
}
|
||||
|
||||
func mashalASN1Ciphertext(x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||||
var b cryptobyte.Builder
|
||||
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
||||
b.AddASN1BigInt(x1)
|
||||
b.AddASN1BigInt(y1)
|
||||
b.AddASN1OctetString(c3)
|
||||
b.AddASN1OctetString(c2)
|
||||
})
|
||||
return b.Bytes()
|
||||
}
|
||||
|
||||
// EncryptASN1 sm2 encrypt and output ASN.1 result, compliance with GB/T 32918.4-2016.
|
||||
func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error) {
|
||||
return Encrypt(random, pub, msg, ASN1EncrypterOpts)
|
||||
@ -271,35 +201,41 @@ func EncryptASN1(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, er
|
||||
|
||||
// Encrypt sm2 encrypt implementation, compliance with GB/T 32918.4-2016.
|
||||
func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
||||
curve := pub.Curve
|
||||
msgLen := len(msg)
|
||||
if msgLen == 0 {
|
||||
//A3, requirement is to check if h*P is infinite point, h is 1
|
||||
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
|
||||
return nil, errors.New("sm2: invalid public key")
|
||||
}
|
||||
if len(msg) == 0 {
|
||||
return nil, nil
|
||||
}
|
||||
if opts == nil {
|
||||
opts = defaultEncrypterOpts
|
||||
}
|
||||
//A3, requirement is to check if h*P is infinite point, h is 1
|
||||
if pub.X.Sign() == 0 && pub.Y.Sign() == 0 {
|
||||
return nil, errors.New("sm2: invalid public key")
|
||||
switch pub.Curve.Params() {
|
||||
case P256().Params():
|
||||
return encryptSM2EC(p256(), pub, random, msg, opts)
|
||||
default:
|
||||
return encryptLegacy(random, pub, msg, opts)
|
||||
}
|
||||
}
|
||||
|
||||
func encryptSM2EC(c *sm2Curve, pub *ecdsa.PublicKey, random io.Reader, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
||||
Q, err := c.pointFromAffine(pub.X, pub.Y)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
var retryCount int = 0
|
||||
for {
|
||||
//A1, generate random k
|
||||
k, err := randFieldElement(curve, random)
|
||||
k, C1, err := randomPoint(c, random)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
//A2, calculate C1 = k * G
|
||||
x1, y1 := curve.ScalarBaseMult(k.Bytes())
|
||||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||||
|
||||
//A4, calculate k * P (point of Public Key)
|
||||
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
|
||||
|
||||
//A5, calculate t=KDF(x2||y2, klen)
|
||||
c2 := kdf.Kdf(sm3.New(), append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||||
C2, err := Q.ScalarMult(Q, k.Bytes(c.N))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
C2Bytes := C2.Bytes()[1:]
|
||||
c2 := kdf.Kdf(sm3.New(), C2Bytes, len(msg))
|
||||
if subtle.ConstantTimeAllZero(c2) {
|
||||
retryCount++
|
||||
if retryCount > maxRetryLimit {
|
||||
@ -307,26 +243,52 @@ func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *Encrypter
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
//A6, C2 = M + t;
|
||||
subtle.XORBytes(c2, msg, c2)
|
||||
|
||||
//A7, C3 = hash(x2||M||y2)
|
||||
c3 := calculateC3(curve, x2, y2, msg)
|
||||
md := sm3.New()
|
||||
md.Write(C2Bytes[:len(C2Bytes)/2])
|
||||
md.Write(msg)
|
||||
md.Write(C2Bytes[len(C2Bytes)/2:])
|
||||
c3 := md.Sum(nil)
|
||||
|
||||
if opts.CiphertextEncoding == ENCODING_PLAIN {
|
||||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
return append(append(c1, c3...), c2...), nil
|
||||
}
|
||||
// c1 || c2 || c3
|
||||
return append(append(c1, c2...), c3...), nil
|
||||
return encodingCiphertext(opts, C1, c2, c3)
|
||||
}
|
||||
// ASN.1 format will force C3 C2 order
|
||||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||||
return encodingCiphertextASN1(C1, c2, c3)
|
||||
}
|
||||
}
|
||||
|
||||
func encodingCiphertext(opts *EncrypterOpts, C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
|
||||
var c1 []byte
|
||||
switch opts.PointMarshalMode {
|
||||
case MarshalCompressed:
|
||||
c1 = C1.BytesCompressed()
|
||||
default:
|
||||
c1 = C1.Bytes()
|
||||
}
|
||||
|
||||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
return append(append(c1, c3...), c2...), nil
|
||||
}
|
||||
// c1 || c2 || c3
|
||||
return append(append(c1, c2...), c3...), nil
|
||||
}
|
||||
|
||||
func encodingCiphertextASN1(C1 *_sm2ec.SM2P256Point, c2, c3 []byte) ([]byte, error) {
|
||||
c1 := C1.Bytes()
|
||||
var b cryptobyte.Builder
|
||||
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
||||
addASN1IntBytes(b, c1[1:len(c1)/2+1])
|
||||
addASN1IntBytes(b, c1[len(c1)/2+1:])
|
||||
b.AddASN1OctetString(c3)
|
||||
b.AddASN1OctetString(c2)
|
||||
})
|
||||
return b.Bytes()
|
||||
}
|
||||
|
||||
// GenerateKey generates a public and private key pair.
|
||||
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
||||
c := p256()
|
||||
@ -351,19 +313,36 @@ func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||||
return decrypt(priv, ciphertext, nil)
|
||||
}
|
||||
|
||||
func decryptASN1(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
||||
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
switch priv.Curve.Params() {
|
||||
case P256().Params():
|
||||
return decryptSM2EC(p256(), priv, ciphertext, opts)
|
||||
default:
|
||||
return decryptLegacy(priv, ciphertext, opts)
|
||||
}
|
||||
}
|
||||
|
||||
func decryptSM2EC(c *sm2Curve, priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
||||
C1, c2, c3, err := parseCiphertext(c, ciphertext, opts)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||||
curve := priv.Curve
|
||||
x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes())
|
||||
C2, err := C1.ScalarMult(C1, d.Bytes(c.N))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
C2Bytes := C2.Bytes()[1:]
|
||||
msgLen := len(c2)
|
||||
msg := kdf.Kdf(sm3.New(), append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||||
msg := kdf.Kdf(sm3.New(), C2Bytes, msgLen)
|
||||
if subtle.ConstantTimeAllZero(c2) {
|
||||
return nil, errors.New("sm2: invalid cipher text")
|
||||
}
|
||||
@ -371,167 +350,73 @@ func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error
|
||||
//B5, calculate msg = c2 ^ t
|
||||
subtle.XORBytes(msg, c2, msg)
|
||||
|
||||
u := calculateC3(curve, x2, y2, msg)
|
||||
for i := 0; i < sm3.Size; i++ {
|
||||
if c3[i] != u[i] {
|
||||
return nil, errors.New("sm2: invalid hash value")
|
||||
}
|
||||
md := sm3.New()
|
||||
md.Write(C2Bytes[:len(C2Bytes)/2])
|
||||
md.Write(msg)
|
||||
md.Write(C2Bytes[len(C2Bytes)/2:])
|
||||
u := md.Sum(nil)
|
||||
|
||||
if _subtle.ConstantTimeCompare(u, c3) == 1 {
|
||||
return msg, nil
|
||||
}
|
||||
return msg, nil
|
||||
return nil, errors.New("sm2: invalid plaintext digest")
|
||||
}
|
||||
|
||||
func decrypt(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
||||
func parseCiphertext(c *sm2Curve, ciphertext []byte, opts *DecrypterOpts) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
|
||||
bitSize := c.curve.Params().BitSize
|
||||
// Encode the coordinates and let SetBytes reject invalid points.
|
||||
byteLen := (bitSize + 7) / 8
|
||||
splicingOrder := C1C3C2
|
||||
if opts != nil {
|
||||
if opts.CiphertextEncoding == ENCODING_ASN1 {
|
||||
return decryptASN1(priv, ciphertext)
|
||||
}
|
||||
splicingOrder = opts.CipherTextSplicingOrder
|
||||
}
|
||||
if ciphertext[0] == 0x30 {
|
||||
return decryptASN1(priv, ciphertext)
|
||||
|
||||
b := ciphertext[0]
|
||||
switch b {
|
||||
case uncompressed:
|
||||
if len(ciphertext) <= 1+2*byteLen {
|
||||
return nil, nil, nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
C1, err := c.newPoint().SetBytes(ciphertext[:1+2*byteLen])
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
c2, c3 := parseCiphertextC2C3(ciphertext[1+2*byteLen:], splicingOrder)
|
||||
return C1, c2, c3, nil
|
||||
case compressed02, compressed03:
|
||||
if len(ciphertext) <= 1+byteLen {
|
||||
return nil, nil, nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
C1, err := c.newPoint().SetBytes(ciphertext[:1+byteLen])
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
c2, c3 := parseCiphertextC2C3(ciphertext[1+byteLen:], splicingOrder)
|
||||
return C1, c2, c3, nil
|
||||
case byte(0x30):
|
||||
return parseCiphertextASN1(c, ciphertext)
|
||||
default:
|
||||
return nil, nil, nil, errors.New("sm2: invalid/unsupport ciphertext format")
|
||||
}
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
|
||||
func parseCiphertextC2C3(ciphertext []byte, order ciphertextSplicingOrder) ([]byte, []byte) {
|
||||
if order == C1C3C2 {
|
||||
return ciphertext[sm3.Size:], ciphertext[:sm3.Size]
|
||||
}
|
||||
curve := priv.Curve
|
||||
// B1, get C1, and check C1
|
||||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
return ciphertext[:len(ciphertext)-sm3.Size], ciphertext[len(ciphertext)-sm3.Size:]
|
||||
}
|
||||
|
||||
func parseCiphertextASN1(c *sm2Curve, ciphertext []byte) (*_sm2ec.SM2P256Point, []byte, []byte, error) {
|
||||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
//B4, calculate t=KDF(x2||y2, klen)
|
||||
var c2, c3 []byte
|
||||
if splicingOrder == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
|
||||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
|
||||
var (
|
||||
x1, y1 = &big.Int{}, &big.Int{}
|
||||
c2, c3 []byte
|
||||
inner cryptobyte.String
|
||||
)
|
||||
input := cryptobyte.String(ciphertext)
|
||||
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
||||
!input.Empty() ||
|
||||
!inner.ReadASN1Integer(x1) ||
|
||||
!inner.ReadASN1Integer(y1) ||
|
||||
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
|
||||
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
|
||||
!inner.Empty() {
|
||||
return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext")
|
||||
}
|
||||
return x1, y1, c2, c3, nil
|
||||
}
|
||||
|
||||
// ASN1Ciphertext2Plain utility method to convert ASN.1 encoding ciphertext to plain encoding format
|
||||
func ASN1Ciphertext2Plain(ciphertext []byte, opts *EncrypterOpts) ([]byte, error) {
|
||||
if opts == nil {
|
||||
opts = defaultEncrypterOpts
|
||||
}
|
||||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext((ciphertext))
|
||||
C1, err := c.pointFromAffine(x1, y1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
curve := sm2ec.P256()
|
||||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
return append(append(c1, c3...), c2...), nil
|
||||
}
|
||||
// c1 || c2 || c3
|
||||
return append(append(c1, c2...), c3...), nil
|
||||
}
|
||||
|
||||
// PlainCiphertext2ASN1 utility method to convert plain encoding ciphertext to ASN.1 encoding format
|
||||
func PlainCiphertext2ASN1(ciphertext []byte, from ciphertextSplicingOrder) ([]byte, error) {
|
||||
if ciphertext[0] == 0x30 {
|
||||
return nil, errors.New("sm2: invalid plain encoding ciphertext")
|
||||
}
|
||||
curve := sm2ec.P256()
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
// get C1, and check C1
|
||||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c2, c3 []byte
|
||||
|
||||
if from == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
// AdjustCiphertextSplicingOrder utility method to change c2 c3 order
|
||||
func AdjustCiphertextSplicingOrder(ciphertext []byte, from, to ciphertextSplicingOrder) ([]byte, error) {
|
||||
curve := sm2ec.P256()
|
||||
if from == to {
|
||||
return ciphertext, nil
|
||||
}
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
|
||||
// get C1, and check C1
|
||||
_, _, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c1, c2, c3 []byte
|
||||
|
||||
c1 = ciphertext[:c3Start]
|
||||
if from == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
|
||||
result := make([]byte, ciphertextLen)
|
||||
copy(result, c1)
|
||||
if to == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
copy(result[c3Start:], c3)
|
||||
copy(result[c3Start+sm3.Size:], c2)
|
||||
} else {
|
||||
// c1 || c2 || c3
|
||||
copy(result[c3Start:], c2)
|
||||
copy(result[ciphertextLen-sm3.Size:], c3)
|
||||
}
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
|
||||
// (exponentiation modulo P - 2, per Euler's theorem). This has better
|
||||
// constant-time properties than Euclid's method (implemented in
|
||||
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
|
||||
// itself isn't strictly constant-time so it's not perfect.
|
||||
func fermatInverse(k, N *big.Int) *big.Int {
|
||||
two := big.NewInt(2)
|
||||
nMinus2 := new(big.Int).Sub(N, two)
|
||||
return new(big.Int).Exp(k, nMinus2, N)
|
||||
return C1, c2, c3, nil
|
||||
}
|
||||
|
||||
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
|
||||
@ -955,8 +840,8 @@ func randomPoint(c *sm2Curve, rand io.Reader) (k *bigmod.Nat, p *_sm2ec.SM2P256P
|
||||
if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
|
||||
// Just to be safe, assert that this only happens for the one curve that
|
||||
// doesn't have a round number of bits.
|
||||
if excess != 0 && c.curve.Params().Name != "P-521" {
|
||||
panic("ecdsa: internal error: unexpectedly masking off bits")
|
||||
if excess != 0 {
|
||||
panic("sm2: internal error: unexpectedly masking off bits")
|
||||
}
|
||||
b[0] >>= excess
|
||||
}
|
||||
|
@ -3,10 +3,17 @@ package sm2
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
_subtle "crypto/subtle"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
"strings"
|
||||
|
||||
"github.com/emmansun/gmsm/internal/subtle"
|
||||
"github.com/emmansun/gmsm/kdf"
|
||||
"github.com/emmansun/gmsm/sm2/sm2ec"
|
||||
"github.com/emmansun/gmsm/sm3"
|
||||
"golang.org/x/crypto/cryptobyte"
|
||||
"golang.org/x/crypto/cryptobyte/asn1"
|
||||
)
|
||||
@ -119,6 +126,17 @@ func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, er
|
||||
return encodeSignature(r.Bytes(), s.Bytes())
|
||||
}
|
||||
|
||||
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
|
||||
// (exponentiation modulo P - 2, per Euler's theorem). This has better
|
||||
// constant-time properties than Euclid's method (implemented in
|
||||
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
|
||||
// itself isn't strictly constant-time so it's not perfect.
|
||||
func fermatInverse(k, N *big.Int) *big.Int {
|
||||
two := big.NewInt(2)
|
||||
nMinus2 := new(big.Int).Sub(N, two)
|
||||
return new(big.Int).Exp(k, nMinus2, N)
|
||||
}
|
||||
|
||||
// SignWithSM2 follow sm2 dsa standards for hash part, compliance with GB/T 32918.2-2016.
|
||||
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
|
||||
digest, err := calculateSM2Hash(&priv.PublicKey, msg, uid)
|
||||
@ -215,3 +233,287 @@ func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func encryptLegacy(random io.Reader, pub *ecdsa.PublicKey, msg []byte, opts *EncrypterOpts) ([]byte, error) {
|
||||
curve := pub.Curve
|
||||
msgLen := len(msg)
|
||||
|
||||
var retryCount int = 0
|
||||
for {
|
||||
//A1, generate random k
|
||||
k, err := randFieldElement(curve, random)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
//A2, calculate C1 = k * G
|
||||
x1, y1 := curve.ScalarBaseMult(k.Bytes())
|
||||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||||
|
||||
//A4, calculate k * P (point of Public Key)
|
||||
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
|
||||
|
||||
//A5, calculate t=KDF(x2||y2, klen)
|
||||
c2 := kdf.Kdf(sm3.New(), append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||||
if subtle.ConstantTimeAllZero(c2) {
|
||||
retryCount++
|
||||
if retryCount > maxRetryLimit {
|
||||
return nil, fmt.Errorf("sm2: A5, failed to calculate valid t, tried %v times", retryCount)
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
//A6, C2 = M + t;
|
||||
subtle.XORBytes(c2, msg, c2)
|
||||
|
||||
//A7, C3 = hash(x2||M||y2)
|
||||
c3 := calculateC3(curve, x2, y2, msg)
|
||||
|
||||
if opts.CiphertextEncoding == ENCODING_PLAIN {
|
||||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
return append(append(c1, c3...), c2...), nil
|
||||
}
|
||||
// c1 || c2 || c3
|
||||
return append(append(c1, c2...), c3...), nil
|
||||
}
|
||||
// ASN.1 format will force C3 C2 order
|
||||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||||
}
|
||||
}
|
||||
|
||||
func calculateC3(curve elliptic.Curve, x2, y2 *big.Int, msg []byte) []byte {
|
||||
md := sm3.New()
|
||||
md.Write(toBytes(curve, x2))
|
||||
md.Write(msg)
|
||||
md.Write(toBytes(curve, y2))
|
||||
return md.Sum(nil)
|
||||
}
|
||||
|
||||
func mashalASN1Ciphertext(x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||||
var b cryptobyte.Builder
|
||||
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
||||
b.AddASN1BigInt(x1)
|
||||
b.AddASN1BigInt(y1)
|
||||
b.AddASN1OctetString(c3)
|
||||
b.AddASN1OctetString(c2)
|
||||
})
|
||||
return b.Bytes()
|
||||
}
|
||||
|
||||
func unmarshalASN1Ciphertext(ciphertext []byte) (*big.Int, *big.Int, []byte, []byte, error) {
|
||||
var (
|
||||
x1, y1 = &big.Int{}, &big.Int{}
|
||||
c2, c3 []byte
|
||||
inner cryptobyte.String
|
||||
)
|
||||
input := cryptobyte.String(ciphertext)
|
||||
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
||||
!input.Empty() ||
|
||||
!inner.ReadASN1Integer(x1) ||
|
||||
!inner.ReadASN1Integer(y1) ||
|
||||
!inner.ReadASN1Bytes(&c3, asn1.OCTET_STRING) ||
|
||||
!inner.ReadASN1Bytes(&c2, asn1.OCTET_STRING) ||
|
||||
!inner.Empty() {
|
||||
return nil, nil, nil, nil, errors.New("sm2: invalid asn1 format ciphertext")
|
||||
}
|
||||
return x1, y1, c2, c3, nil
|
||||
}
|
||||
|
||||
// ASN1Ciphertext2Plain utility method to convert ASN.1 encoding ciphertext to plain encoding format
|
||||
func ASN1Ciphertext2Plain(ciphertext []byte, opts *EncrypterOpts) ([]byte, error) {
|
||||
if opts == nil {
|
||||
opts = defaultEncrypterOpts
|
||||
}
|
||||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext((ciphertext))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
curve := sm2ec.P256()
|
||||
c1 := opts.PointMarshalMode.mashal(curve, x1, y1)
|
||||
if opts.CiphertextSplicingOrder == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
return append(append(c1, c3...), c2...), nil
|
||||
}
|
||||
// c1 || c2 || c3
|
||||
return append(append(c1, c2...), c3...), nil
|
||||
}
|
||||
|
||||
// PlainCiphertext2ASN1 utility method to convert plain encoding ciphertext to ASN.1 encoding format
|
||||
func PlainCiphertext2ASN1(ciphertext []byte, from ciphertextSplicingOrder) ([]byte, error) {
|
||||
if ciphertext[0] == 0x30 {
|
||||
return nil, errors.New("sm2: invalid plain encoding ciphertext")
|
||||
}
|
||||
curve := sm2ec.P256()
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
// get C1, and check C1
|
||||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c2, c3 []byte
|
||||
|
||||
if from == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
return mashalASN1Ciphertext(x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
// AdjustCiphertextSplicingOrder utility method to change c2 c3 order
|
||||
func AdjustCiphertextSplicingOrder(ciphertext []byte, from, to ciphertextSplicingOrder) ([]byte, error) {
|
||||
curve := sm2ec.P256()
|
||||
if from == to {
|
||||
return ciphertext, nil
|
||||
}
|
||||
ciphertextLen := len(ciphertext)
|
||||
if ciphertextLen <= 1+(curve.Params().BitSize/8)+sm3.Size {
|
||||
return nil, errors.New("sm2: invalid ciphertext length")
|
||||
}
|
||||
|
||||
// get C1, and check C1
|
||||
_, _, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c1, c2, c3 []byte
|
||||
|
||||
c1 = ciphertext[:c3Start]
|
||||
if from == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
|
||||
result := make([]byte, ciphertextLen)
|
||||
copy(result, c1)
|
||||
if to == C1C3C2 {
|
||||
// c1 || c3 || c2
|
||||
copy(result[c3Start:], c3)
|
||||
copy(result[c3Start+sm3.Size:], c2)
|
||||
} else {
|
||||
// c1 || c2 || c3
|
||||
copy(result[c3Start:], c2)
|
||||
copy(result[ciphertextLen-sm3.Size:], c3)
|
||||
}
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func decryptASN1(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||||
x1, y1, c2, c3, err := unmarshalASN1Ciphertext(ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
func rawDecrypt(priv *PrivateKey, x1, y1 *big.Int, c2, c3 []byte) ([]byte, error) {
|
||||
curve := priv.Curve
|
||||
x2, y2 := curve.ScalarMult(x1, y1, priv.D.Bytes())
|
||||
msgLen := len(c2)
|
||||
msg := kdf.Kdf(sm3.New(), append(toBytes(curve, x2), toBytes(curve, y2)...), msgLen)
|
||||
if subtle.ConstantTimeAllZero(c2) {
|
||||
return nil, errors.New("sm2: invalid cipher text")
|
||||
}
|
||||
|
||||
//B5, calculate msg = c2 ^ t
|
||||
subtle.XORBytes(msg, c2, msg)
|
||||
|
||||
u := calculateC3(curve, x2, y2, msg)
|
||||
if _subtle.ConstantTimeCompare(u, c3) == 1 {
|
||||
return msg, nil
|
||||
}
|
||||
return nil, errors.New("sm2: invalid plaintext digest")
|
||||
}
|
||||
|
||||
func decryptLegacy(priv *PrivateKey, ciphertext []byte, opts *DecrypterOpts) ([]byte, error) {
|
||||
splicingOrder := C1C3C2
|
||||
if opts != nil {
|
||||
if opts.CiphertextEncoding == ENCODING_ASN1 {
|
||||
return decryptASN1(priv, ciphertext)
|
||||
}
|
||||
splicingOrder = opts.CipherTextSplicingOrder
|
||||
}
|
||||
if ciphertext[0] == 0x30 {
|
||||
return decryptASN1(priv, ciphertext)
|
||||
}
|
||||
ciphertextLen := len(ciphertext)
|
||||
curve := priv.Curve
|
||||
// B1, get C1, and check C1
|
||||
x1, y1, c3Start, err := bytes2Point(curve, ciphertext)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
//B4, calculate t=KDF(x2||y2, klen)
|
||||
var c2, c3 []byte
|
||||
if splicingOrder == C1C3C2 {
|
||||
c2 = ciphertext[c3Start+sm3.Size:]
|
||||
c3 = ciphertext[c3Start : c3Start+sm3.Size]
|
||||
} else {
|
||||
c2 = ciphertext[c3Start : ciphertextLen-sm3.Size]
|
||||
c3 = ciphertext[ciphertextLen-sm3.Size:]
|
||||
}
|
||||
|
||||
return rawDecrypt(priv, x1, y1, c2, c3)
|
||||
}
|
||||
|
||||
func bytes2Point(curve elliptic.Curve, bytes []byte) (*big.Int, *big.Int, int, error) {
|
||||
if len(bytes) < 1+(curve.Params().BitSize/8) {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid bytes length %d", len(bytes))
|
||||
}
|
||||
format := bytes[0]
|
||||
byteLen := (curve.Params().BitSize + 7) >> 3
|
||||
switch format {
|
||||
case uncompressed, hybrid06, hybrid07: // what's the hybrid format purpose?
|
||||
if len(bytes) < 1+byteLen*2 {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid point uncompressed/hybrid form bytes length %d", len(bytes))
|
||||
}
|
||||
data := make([]byte, 1+byteLen*2)
|
||||
data[0] = uncompressed
|
||||
copy(data[1:], bytes[1:1+byteLen*2])
|
||||
x, y := sm2ec.Unmarshal(curve, data)
|
||||
if x == nil || y == nil {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
|
||||
}
|
||||
return x, y, 1 + byteLen*2, nil
|
||||
case compressed02, compressed03:
|
||||
if len(bytes) < 1+byteLen {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: invalid point compressed form bytes length %d", len(bytes))
|
||||
}
|
||||
// Make sure it's NIST curve or SM2 P-256 curve
|
||||
if strings.HasPrefix(curve.Params().Name, "P-") || strings.EqualFold(curve.Params().Name, sm2ec.P256().Params().Name) {
|
||||
// y² = x³ - 3x + b, prime curves
|
||||
x, y := sm2ec.UnmarshalCompressed(curve, bytes[:1+byteLen])
|
||||
if x == nil || y == nil {
|
||||
return nil, nil, 0, fmt.Errorf("sm2: point is not on curve %s", curve.Params().Name)
|
||||
}
|
||||
return x, y, 1 + byteLen, nil
|
||||
}
|
||||
return nil, nil, 0, fmt.Errorf("sm2: unsupport point form %d, curve %s", format, curve.Params().Name)
|
||||
}
|
||||
return nil, nil, 0, fmt.Errorf("sm2: unknown point form %d", format)
|
||||
}
|
||||
|
||||
func (mode pointMarshalMode) mashal(curve elliptic.Curve, x, y *big.Int) []byte {
|
||||
switch mode {
|
||||
case MarshalCompressed:
|
||||
return elliptic.MarshalCompressed(curve, x, y)
|
||||
case MarshalHybrid:
|
||||
buffer := elliptic.Marshal(curve, x, y)
|
||||
buffer[0] = byte(y.Bit(0)) | hybrid06
|
||||
return buffer
|
||||
default:
|
||||
return elliptic.Marshal(curve, x, y)
|
||||
}
|
||||
}
|
||||
|
@ -67,32 +67,39 @@ func Test_SplicingOrder(t *testing.T) {
|
||||
|
||||
func Test_encryptDecrypt_ASN1(t *testing.T) {
|
||||
priv, _ := GenerateKey(rand.Reader)
|
||||
priv2, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
|
||||
key2 := new(PrivateKey)
|
||||
key2.PrivateKey = *priv2
|
||||
tests := []struct {
|
||||
name string
|
||||
plainText string
|
||||
priv *PrivateKey
|
||||
}{
|
||||
// TODO: Add test cases.
|
||||
{"less than 32", "encryption standard"},
|
||||
{"equals 32", "encryption standard encryption "},
|
||||
{"long than 32", "encryption standard encryption standard"},
|
||||
{"less than 32", "encryption standard", priv},
|
||||
{"equals 32", "encryption standard encryption ", priv},
|
||||
{"long than 32", "encryption standard encryption standard", priv},
|
||||
{"less than 32", "encryption standard", key2},
|
||||
{"equals 32", "encryption standard encryption ", key2},
|
||||
{"long than 32", "encryption standard encryption standard", key2},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
encrypterOpts := ASN1EncrypterOpts
|
||||
ciphertext, err := Encrypt(rand.Reader, &priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
ciphertext, err := Encrypt(rand.Reader, &tt.priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
if err != nil {
|
||||
t.Fatalf("encrypt failed %v", err)
|
||||
t.Fatalf("%v encrypt failed %v", tt.priv.Curve.Params().Name, err)
|
||||
}
|
||||
plaintext, err := priv.Decrypt(rand.Reader, ciphertext, ASN1DecrypterOpts)
|
||||
plaintext, err := tt.priv.Decrypt(rand.Reader, ciphertext, ASN1DecrypterOpts)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
t.Fatalf("%v decrypt 1 failed %v", tt.priv.Curve.Params().Name, err)
|
||||
}
|
||||
if !reflect.DeepEqual(string(plaintext), tt.plainText) {
|
||||
t.Errorf("Decrypt() = %v, want %v", string(plaintext), tt.plainText)
|
||||
}
|
||||
plaintext, err = priv.Decrypt(rand.Reader, ciphertext, ASN1DecrypterOpts)
|
||||
plaintext, err = tt.priv.Decrypt(rand.Reader, ciphertext, ASN1DecrypterOpts)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
t.Fatalf("%v decrypt 2 failed %v", tt.priv.Curve.Params().Name, err)
|
||||
}
|
||||
if !reflect.DeepEqual(string(plaintext), tt.plainText) {
|
||||
t.Errorf("Decrypt() = %v, want %v", string(plaintext), tt.plainText)
|
||||
@ -218,22 +225,29 @@ func Test_ASN1Ciphertext2Plain(t *testing.T) {
|
||||
|
||||
func Test_encryptDecrypt(t *testing.T) {
|
||||
priv, _ := GenerateKey(rand.Reader)
|
||||
priv2, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
|
||||
key2 := new(PrivateKey)
|
||||
key2.PrivateKey = *priv2
|
||||
tests := []struct {
|
||||
name string
|
||||
plainText string
|
||||
priv *PrivateKey
|
||||
}{
|
||||
// TODO: Add test cases.
|
||||
{"less than 32", "encryption standard"},
|
||||
{"equals 32", "encryption standard encryption "},
|
||||
{"long than 32", "encryption standard encryption standard"},
|
||||
{"less than 32", "encryption standard", priv},
|
||||
{"equals 32", "encryption standard encryption ", priv},
|
||||
{"long than 32", "encryption standard encryption standard", priv},
|
||||
{"less than 32", "encryption standard", key2},
|
||||
{"equals 32", "encryption standard encryption ", key2},
|
||||
{"long than 32", "encryption standard encryption standard", key2},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
ciphertext, err := Encrypt(rand.Reader, &priv.PublicKey, []byte(tt.plainText), nil)
|
||||
ciphertext, err := Encrypt(rand.Reader, &tt.priv.PublicKey, []byte(tt.plainText), nil)
|
||||
if err != nil {
|
||||
t.Fatalf("encrypt failed %v", err)
|
||||
}
|
||||
plaintext, err := Decrypt(priv, ciphertext)
|
||||
plaintext, err := Decrypt(tt.priv, ciphertext)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
}
|
||||
@ -242,11 +256,11 @@ func Test_encryptDecrypt(t *testing.T) {
|
||||
}
|
||||
// compress mode
|
||||
encrypterOpts := NewPlainEncrypterOpts(MarshalCompressed, C1C3C2)
|
||||
ciphertext, err = Encrypt(rand.Reader, &priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
ciphertext, err = Encrypt(rand.Reader, &tt.priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
if err != nil {
|
||||
t.Fatalf("encrypt failed %v", err)
|
||||
}
|
||||
plaintext, err = Decrypt(priv, ciphertext)
|
||||
plaintext, err = Decrypt(tt.priv, ciphertext)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
}
|
||||
@ -256,18 +270,18 @@ func Test_encryptDecrypt(t *testing.T) {
|
||||
|
||||
// hybrid mode
|
||||
encrypterOpts = NewPlainEncrypterOpts(MarshalHybrid, C1C3C2)
|
||||
ciphertext, err = Encrypt(rand.Reader, &priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
ciphertext, err = Encrypt(rand.Reader, &tt.priv.PublicKey, []byte(tt.plainText), encrypterOpts)
|
||||
if err != nil {
|
||||
t.Fatalf("encrypt failed %v", err)
|
||||
}
|
||||
plaintext, err = Decrypt(priv, ciphertext)
|
||||
plaintext, err = Decrypt(tt.priv, ciphertext)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
}
|
||||
if !reflect.DeepEqual(string(plaintext), tt.plainText) {
|
||||
t.Errorf("Decrypt() = %v, want %v", string(plaintext), tt.plainText)
|
||||
}
|
||||
plaintext, err = Decrypt(priv, ciphertext)
|
||||
plaintext, err = Decrypt(tt.priv, ciphertext)
|
||||
if err != nil {
|
||||
t.Fatalf("decrypt failed %v", err)
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user