store SM2 precomputed basepoint table in source

This commit is contained in:
Emman 2021-11-04 10:00:50 +08:00
parent 8a2098aa26
commit e1fa144e15
5 changed files with 1593 additions and 52 deletions

96
sm2/gen_p256_table.go Normal file
View File

@ -0,0 +1,96 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build amd64
// +build amd64
package sm2
import (
"bytes"
"encoding/binary"
"fmt"
"go/format"
)
func GenTables() {
buf := new(bytes.Buffer)
fmt.Fprint(buf, `
// Generated by gen_p256_table.go. DO NOT EDIT.
//go:build amd64
// +build amd64
package sm2
`[1:])
// Generate precomputed p256 tables.
var pre [43][32 * 8]uint64
basePoint := []uint64{
0x61328990f418029e, 0x3e7981eddca6c050, 0xd6a1ed99ac24c3c3, 0x91167a5ee1c13b05,
0xc1354e593c2d0ddd, 0xc1f5e5788d3295fa, 0x8d4cfb066e2a48f8, 0x63cd65d481d735bd,
0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000,
}
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
// Update the table entry
copy(pre[i][j*8:], t1[:8])
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
fmt.Fprint(buf, "const p256Precomputed = \"\" +\n\n")
// Dump the precomputed tables, flattened, little-endian.
// These tables are used directly by assembly on little-endian platforms.
// Putting the data in a const string lets it be stored readonly.
for i := range &pre {
for j, v := range &pre[i] {
fmt.Fprintf(buf, "\"")
var u8 [8]byte
binary.LittleEndian.PutUint64(u8[:], v)
for _, b := range &u8 {
fmt.Fprintf(buf, "\\x%02x", b)
}
fmt.Fprintf(buf, "\"")
if i < len(pre)-1 || j < len(pre[i])-1 {
fmt.Fprint(buf, "+")
}
if j%8 == 7 {
fmt.Fprint(buf, "\n")
}
}
fmt.Fprint(buf, "\n")
}
src := buf.Bytes()
fmtsrc, fmterr := format.Source(src)
// If formatting failed, keep the original source for debugging.
if fmterr == nil {
src = fmtsrc
}
fmt.Println(string(src))
}

View File

@ -15,7 +15,6 @@ package sm2
import (
"crypto/elliptic"
"math/big"
"sync"
)
type (
@ -29,9 +28,7 @@ type (
)
var (
p256 p256Curve
p256Precomputed *[43][32 * 8]uint64
precomputeOnce sync.Once
p256 p256Curve
)
func initP256() {
@ -82,7 +79,7 @@ func p256LittleToBig(res []byte, in []uint64)
func p256Select(point, table []uint64, idx int)
//go:noescape
func p256SelectBase(point, table []uint64, idx int)
func p256SelectBase(point *[12]uint64, table string, idx int)
// Montgomery multiplication modulo Ord(G)
//go:noescape
@ -446,52 +443,10 @@ func boothW6(in uint) (int, int) {
return int(d), int(s & 1)
}
// table[i][j] = (2^(6*i))*(j+1)*G mod P
func initTable() {
p256Precomputed = new([43][32 * 8]uint64)
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
// Update the table entry
copy(p256Precomputed[i][j*8:], t1[:8])
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
}
func (p *p256Point) p256BaseMult(scalar []uint64) {
precomputeOnce.Do(initTable)
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel)
p256SelectBase(&p.xyz, p256Precomputed, sel)
p256NegCond(p.xyz[4:8], sign)
// (This is one, in the Montgomery domain.)
@ -518,7 +473,7 @@ func (p *p256Point) p256BaseMult(scalar []uint64) {
}
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel)
p256SelectBase(&t0.xyz, p256Precomputed[i*32*8*8:], sel)
p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
zero |= sel
}

View File

@ -773,10 +773,10 @@ loop_select:
RET
/* ---------------------------------------*/
// Constant time point access to base point table.
// func p256SelectBase(point, table []uint64, idx int)
// func p256SelectBase(point *[12]uint64, table string, idx int)
TEXT ·p256SelectBase(SB),NOSPLIT,$0
MOVQ idx+48(FP),AX
MOVQ table+24(FP),DI
MOVQ idx+24(FP),AX
MOVQ table+8(FP),DI
MOVQ point+0(FP),DX
PXOR X15, X15 // X15 = 0

1425
sm2/p256_asm_table.go Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,65 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build amd64
// +build amd64
package sm2
import (
"encoding/binary"
"reflect"
"testing"
)
func TestP256PrecomputedTable(t *testing.T) {
basePoint := []uint64{
0x61328990f418029e, 0x3e7981eddca6c050, 0xd6a1ed99ac24c3c3, 0x91167a5ee1c13b05,
0xc1354e593c2d0ddd, 0xc1f5e5788d3295fa, 0x8d4cfb066e2a48f8, 0x63cd65d481d735bd,
0x0000000000000001, 0x00000000ffffffff, 0x0000000000000000, 0x0000000100000000,
}
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
buf := make([]byte, 8*8)
for i, u := range t1[:8] {
binary.LittleEndian.PutUint64(buf[i*8:i*8+8], u)
}
start := i*32*8*8 + j*8*8
if got, want := p256Precomputed[start:start+64], string(buf); !reflect.DeepEqual(got, want) {
t.Fatalf("Unexpected table entry at [%d][%d:%d]: got %v, want %v", i, j*8, (j*8)+8, got, want)
}
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
}