cfca: provide cfca envelope message facades #283

This commit is contained in:
Sun Yimin 2024-12-03 17:53:25 +08:00 committed by GitHub
parent 0e154ad9cb
commit a599819ef8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 229 additions and 4 deletions

View File

@ -10,6 +10,7 @@ import (
"github.com/emmansun/gmsm/padding"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/pkcs7"
"github.com/emmansun/gmsm/sm2"
"github.com/emmansun/gmsm/sm3"
"github.com/emmansun/gmsm/sm4"
@ -38,9 +39,9 @@ type certData struct {
}
var (
oidSM2Data = asn1.ObjectIdentifier{1, 2, 156, 10197, 6, 1, 4, 2, 1}
oidSM4 = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 104} // SADK中认为这就是SM4_CBC不知道是不是历史原因
oidSM4CBC = asn1.ObjectIdentifier{1, 2, 156, 10197, 1, 104, 2}
oidSM2Data = pkcs7.SM2OIDData
oidSM4 = pkcs.SM4.OID()
oidSM4CBC = pkcs.SM4CBC.OID()
)
// ParseSM2 parses the der data, returns private key and related certificate, it's CFCA private structure.

53
cfca/pkcs7_envelope.go Normal file
View File

@ -0,0 +1,53 @@
// Copyright 2024 Sun Yimin. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package cfca
import (
"crypto"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/pkcs7"
"github.com/emmansun/gmsm/smx509"
)
// EnvelopeMessage creates and returns an envelope data PKCS7 structure (DER encoded) with encrypted
// recipient keys for each recipient public key.
//
// The OIDs use GM/T 0010 - 2012 set and the encrypted key uses ASN.1 format.
// This function uses recipient's SubjectKeyIdentifier to identify the recipient.
func EnvelopeMessage(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return pkcs7.EnvelopeMessageCFCA(cipher, content, recipients)
}
// OpenEnvelopedMessage decrypts the enveloped message (DER encoded) using the provided certificate and private key.
// The certificate is used to identify the recipient and the private key is used to decrypt the encrypted key.
func OpenEnvelopedMessage(data []byte, recipientCert *smx509.Certificate, key crypto.PrivateKey) ([]byte, error) {
p7, err := pkcs7.Parse(data)
if err != nil {
return nil, err
}
return p7.Decrypt(recipientCert, key)
}
// EnvelopeMessageLegacy creates and returns an envelope data PKCS7 structure (DER encoded) with encrypted
// recipient keys for each recipient public key. This method is used for CFCA SADK verion less than 3.2 compatibility.
//
// The OIDs use GM/T 0010 - 2012 set and the encrypted key use C1C2C3 format and without 0x4 prefix.
// This function uses recipient's IssuerAndSerialNumber to identify the recipient.
func EnvelopeMessageLegacy(cipher pkcs.Cipher, content []byte, recipients []*smx509.Certificate) ([]byte, error) {
return pkcs7.EncryptCFCA(cipher, content, recipients)
}
// OpenEnvelopedMessageLegacy decrypts the enveloped message (DER encoded) using the provided certificate and private key.
// The certificate is used to identify the recipient and the private key is used to decrypt the encrypted key.
//
// This method is used for CFCA SADK verion less than 3.2 compatibility.
func OpenEnvelopedMessageLegacy(data []byte, recipientCert *smx509.Certificate, key crypto.PrivateKey) ([]byte, error) {
p7, err := pkcs7.Parse(data)
if err != nil {
return nil, err
}
return p7.DecryptCFCA(recipientCert, key)
}

171
cfca/pkcs7_envelope_test.go Normal file
View File

@ -0,0 +1,171 @@
// Copyright 2024 Sun Yimin. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package cfca
import (
"bytes"
"crypto"
"crypto/rand"
"crypto/x509"
"crypto/x509/pkix"
"fmt"
"math/big"
"testing"
"time"
"github.com/emmansun/gmsm/pkcs"
"github.com/emmansun/gmsm/sm2"
"github.com/emmansun/gmsm/smx509"
)
type certKeyPair struct {
Certificate *smx509.Certificate
PrivateKey *crypto.PrivateKey
}
func createTestSM2Certificate(allCA bool) (certKeyPair, error) {
signer, err := createTestSM2CertificateByIssuer("Eddard Stark", nil, smx509.SM2WithSM3, true)
if err != nil {
return certKeyPair{}, err
}
pair, err := createTestSM2CertificateByIssuer("Jon Snow", signer, smx509.SM2WithSM3, allCA)
if err != nil {
return certKeyPair{}, err
}
return *pair, nil
}
func createTestSM2CertificateByIssuer(name string, issuer *certKeyPair, sigAlg x509.SignatureAlgorithm, isCA bool) (*certKeyPair, error) {
var (
err error
priv crypto.PrivateKey
derCert []byte
issuerCert *smx509.Certificate
issuerKey crypto.PrivateKey
)
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 32)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, err
}
template := x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
CommonName: name,
Organization: []string{"Acme Co"},
},
NotBefore: time.Now().Add(-1 * time.Second),
NotAfter: time.Now().AddDate(1, 0, 0),
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageEmailProtection},
}
if issuer != nil {
issuerCert = issuer.Certificate
issuerKey = *issuer.PrivateKey
}
switch sigAlg {
case smx509.SM2WithSM3:
priv, err = sm2.GenerateKey(rand.Reader)
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("unsupported signature algorithm %v", sigAlg)
}
if isCA {
template.IsCA = true
template.KeyUsage |= x509.KeyUsageCertSign
template.BasicConstraintsValid = true
}
if issuer == nil {
// no issuer given,make this a self-signed root cert
issuerCert = (*smx509.Certificate)(&template)
issuerKey = priv
}
switch pkey := priv.(type) {
case *sm2.PrivateKey:
derCert, err = smx509.CreateCertificate(rand.Reader, &template, (*x509.Certificate)(issuerCert), pkey.Public(), issuerKey)
default:
return nil, fmt.Errorf("unsupported private key type %T", pkey)
}
if err != nil {
return nil, err
}
if len(derCert) == 0 {
return nil, fmt.Errorf("no certificate created, probably due to wrong keys. types were %T and %T", priv, issuerKey)
}
cert, err := smx509.ParseCertificate(derCert)
if err != nil {
return nil, err
}
// pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw})
return &certKeyPair{
Certificate: cert,
PrivateKey: &priv,
}, nil
}
func TestEnvelopeMessage(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4,
pkcs.SM4CBC,
}
for _, cipher := range ciphers {
plaintext := []byte("Hello Secret World!")
cert, err := createTestSM2Certificate(true)
if err != nil {
t.Fatal(err)
}
encrypted, err := EnvelopeMessage(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
_, err = OpenEnvelopedMessage(encrypted[:len(encrypted)-1], cert.Certificate, *cert.PrivateKey)
if err == nil {
t.Fatalf("expected error when decrypting with wrong key, got nil")
}
// pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
result, err := OpenEnvelopedMessage(encrypted, cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %v", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}
func TestEnvelopeMessageLegacy(t *testing.T) {
ciphers := []pkcs.Cipher{
pkcs.SM4,
pkcs.SM4CBC,
}
for _, cipher := range ciphers {
plaintext := []byte("Hello Secret World!")
cert, err := createTestSM2Certificate(false)
if err != nil {
t.Fatal(err)
}
encrypted, err := EnvelopeMessageLegacy(cipher, plaintext, []*smx509.Certificate{cert.Certificate})
if err != nil {
t.Fatal(err)
}
_, err = OpenEnvelopedMessage(encrypted[:len(encrypted)-1], cert.Certificate, *cert.PrivateKey)
if err == nil {
t.Fatalf("expected error when decrypting with wrong key, got nil")
}
// pem.Encode(os.Stdout, &pem.Block{Type: "PKCS7", Bytes: encrypted})
result, err := OpenEnvelopedMessageLegacy(encrypted, cert.Certificate, *cert.PrivateKey)
if err != nil {
t.Fatalf("cannot Decrypt encrypted result: %v", err)
}
if !bytes.Equal(plaintext, result) {
t.Errorf("encrypted data does not match plaintext:\n\tExpected: %s\n\tActual: %s", plaintext, result)
}
}
}

View File

@ -1466,7 +1466,7 @@ func CreateCertificate(rand io.Reader, template, parent, pub, priv any) ([]byte,
}
}
// RFC 5280 Section 4.1.2.2: serial number must positive
// RFC 5280 Section 4.1.2.2: serial number must be positive
// We _should_ also restrict serials to <= 20 octets, but it turns out a lot of people
// get this wrong, in part because the encoding can itself alter the length of the