mirror of
https://github.com/emmansun/gmsm.git
synced 2025-04-27 04:36:19 +08:00
MAGIC - sm2+sm3 ECDSA sign and verify
This commit is contained in:
parent
cf6789f2f9
commit
086d9d206e
250
sm2/sm2.go
250
sm2/sm2.go
@ -1,13 +1,19 @@
|
|||||||
package sm2
|
package sm2
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"crypto"
|
||||||
|
"crypto/aes"
|
||||||
|
"crypto/cipher"
|
||||||
"crypto/ecdsa"
|
"crypto/ecdsa"
|
||||||
"crypto/elliptic"
|
"crypto/elliptic"
|
||||||
|
"crypto/sha512"
|
||||||
|
"encoding/asn1"
|
||||||
"encoding/binary"
|
"encoding/binary"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
"math/big"
|
"math/big"
|
||||||
|
"strings"
|
||||||
|
|
||||||
"github.com/emmansun/gmsm/sm3"
|
"github.com/emmansun/gmsm/sm3"
|
||||||
)
|
)
|
||||||
@ -20,6 +26,27 @@ const (
|
|||||||
mixed07 byte = 0x07
|
mixed07 byte = 0x07
|
||||||
)
|
)
|
||||||
|
|
||||||
|
// PrivateKey represents an ECDSA private key.
|
||||||
|
type PrivateKey struct {
|
||||||
|
ecdsa.PrivateKey
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sign signs digest with priv, reading randomness from rand. The opts argument
|
||||||
|
// is not currently used but, in keeping with the crypto.Signer interface,
|
||||||
|
// should be the hash function used to digest the message.
|
||||||
|
//
|
||||||
|
// This method implements crypto.Signer, which is an interface to support keys
|
||||||
|
// where the private part is kept in, for example, a hardware module. Common
|
||||||
|
// uses should use the Sign function in this package directly.
|
||||||
|
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
|
||||||
|
r, s, err := Sign(rand, &priv.PrivateKey, digest)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return asn1.Marshal(ecdsaSignature{r, s})
|
||||||
|
}
|
||||||
|
|
||||||
///////////////// below code ship from golan crypto/ecdsa ////////////////////
|
///////////////// below code ship from golan crypto/ecdsa ////////////////////
|
||||||
var one = new(big.Int).SetInt64(1)
|
var one = new(big.Int).SetInt64(1)
|
||||||
|
|
||||||
@ -111,8 +138,23 @@ func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// GenerateKey generates a public and private key pair.
|
||||||
|
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
|
||||||
|
c := P256()
|
||||||
|
k, err := randFieldElement(c, rand)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
priv := new(PrivateKey)
|
||||||
|
priv.PublicKey.Curve = c
|
||||||
|
priv.D = k
|
||||||
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
||||||
|
return priv, nil
|
||||||
|
}
|
||||||
|
|
||||||
// Decrypt sm2 decrypt implementation
|
// Decrypt sm2 decrypt implementation
|
||||||
func Decrypt(priv *ecdsa.PrivateKey, ciphertext []byte) ([]byte, error) {
|
func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
|
||||||
ciphertextLen := len(ciphertext)
|
ciphertextLen := len(ciphertext)
|
||||||
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
|
||||||
return nil, errors.New("invalid ciphertext length")
|
return nil, errors.New("invalid ciphertext length")
|
||||||
@ -153,3 +195,209 @@ func Decrypt(priv *ecdsa.PrivateKey, ciphertext []byte) ([]byte, error) {
|
|||||||
|
|
||||||
return msg, nil
|
return msg, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
||||||
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
||||||
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
||||||
|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
||||||
|
// OpenSSL right shifts excess bits from the number if the hash is too large
|
||||||
|
// and we mirror that too.
|
||||||
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
||||||
|
orderBits := c.Params().N.BitLen()
|
||||||
|
orderBytes := (orderBits + 7) / 8
|
||||||
|
if len(hash) > orderBytes {
|
||||||
|
hash = hash[:orderBytes]
|
||||||
|
}
|
||||||
|
|
||||||
|
ret := new(big.Int).SetBytes(hash)
|
||||||
|
excess := len(hash)*8 - orderBits
|
||||||
|
if excess > 0 {
|
||||||
|
ret.Rsh(ret, uint(excess))
|
||||||
|
}
|
||||||
|
return ret
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
aesIV = "IV for ECDSA CTR"
|
||||||
|
)
|
||||||
|
|
||||||
|
var errZeroParam = errors.New("zero parameter")
|
||||||
|
|
||||||
|
// Sign signs a hash (which should be the result of hashing a larger message)
|
||||||
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
||||||
|
// private key's curve order, the hash will be truncated to that length. It
|
||||||
|
// returns the signature as a pair of integers. The security of the private key
|
||||||
|
// depends on the entropy of rand.
|
||||||
|
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
||||||
|
if !strings.EqualFold(priv.Params().Name, P256().Params().Name) {
|
||||||
|
return ecdsa.Sign(rand, priv, hash)
|
||||||
|
}
|
||||||
|
maybeReadByte(rand)
|
||||||
|
|
||||||
|
// Get min(log2(q) / 2, 256) bits of entropy from rand.
|
||||||
|
entropylen := (priv.Curve.Params().BitSize + 7) / 16
|
||||||
|
if entropylen > 32 {
|
||||||
|
entropylen = 32
|
||||||
|
}
|
||||||
|
entropy := make([]byte, entropylen)
|
||||||
|
_, err = io.ReadFull(rand, entropy)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initialize an SHA-512 hash context; digest ...
|
||||||
|
md := sha512.New()
|
||||||
|
md.Write(priv.D.Bytes()) // the private key,
|
||||||
|
md.Write(entropy) // the entropy,
|
||||||
|
md.Write(hash) // and the input hash;
|
||||||
|
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
||||||
|
// which is an indifferentiable MAC.
|
||||||
|
|
||||||
|
// Create an AES-CTR instance to use as a CSPRNG.
|
||||||
|
block, err := aes.NewCipher(key)
|
||||||
|
if err != nil {
|
||||||
|
return nil, nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create a CSPRNG that xors a stream of zeros with
|
||||||
|
// the output of the AES-CTR instance.
|
||||||
|
csprng := cipher.StreamReader{
|
||||||
|
R: zeroReader,
|
||||||
|
S: cipher.NewCTR(block, []byte(aesIV)),
|
||||||
|
}
|
||||||
|
|
||||||
|
// See [NSA] 3.4.1
|
||||||
|
c := priv.PublicKey.Curve
|
||||||
|
N := c.Params().N
|
||||||
|
if N.Sign() == 0 {
|
||||||
|
return nil, nil, errZeroParam
|
||||||
|
}
|
||||||
|
var k *big.Int
|
||||||
|
e := hashToInt(hash, c)
|
||||||
|
for {
|
||||||
|
for {
|
||||||
|
k, err = randFieldElement(c, csprng)
|
||||||
|
if err != nil {
|
||||||
|
r = nil
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
|
||||||
|
r.Add(r, e) // r = x + e
|
||||||
|
r.Mod(r, N) // r = (x + e) mod N
|
||||||
|
if r.Sign() != 0 {
|
||||||
|
t := new(big.Int).Add(r, k)
|
||||||
|
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
s = new(big.Int).Mul(priv.D, r)
|
||||||
|
s = new(big.Int).Sub(k, s)
|
||||||
|
dp1 := new(big.Int).Add(priv.D, one)
|
||||||
|
dp1Inv := new(big.Int).ModInverse(dp1, N)
|
||||||
|
s.Mul(s, dp1Inv)
|
||||||
|
s.Mod(s, N) // N != 0
|
||||||
|
if s.Sign() != 0 {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
|
||||||
|
|
||||||
|
// CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
|
||||||
|
func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
|
||||||
|
uidLen := len(uid)
|
||||||
|
if uidLen >= 0x2000 {
|
||||||
|
return nil, errors.New("the uid is too long")
|
||||||
|
}
|
||||||
|
entla := uint16(uidLen) << 3
|
||||||
|
hasher := sm3.New()
|
||||||
|
hasher.Write([]byte{byte(entla >> 8), byte(entla)})
|
||||||
|
if uidLen > 0 {
|
||||||
|
hasher.Write(uid)
|
||||||
|
}
|
||||||
|
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
|
||||||
|
hasher.Write(toBytes(pub.Curve, a))
|
||||||
|
hasher.Write(toBytes(pub.Curve, pub.Params().B))
|
||||||
|
hasher.Write(toBytes(pub.Curve, pub.Params().Gx))
|
||||||
|
hasher.Write(toBytes(pub.Curve, pub.Params().Gy))
|
||||||
|
hasher.Write(toBytes(pub.Curve, pub.X))
|
||||||
|
hasher.Write(toBytes(pub.Curve, pub.Y))
|
||||||
|
return hasher.Sum(nil), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// SignWithSM2 follow sm2 dsa standards for hash part
|
||||||
|
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
|
||||||
|
za, err := CalculateZA(&priv.PublicKey, uid)
|
||||||
|
if err != nil {
|
||||||
|
return nil, nil, err
|
||||||
|
}
|
||||||
|
hasher := sm3.New()
|
||||||
|
hasher.Write(za)
|
||||||
|
hasher.Write(msg)
|
||||||
|
|
||||||
|
return Sign(rand, priv, hasher.Sum(nil))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
||||||
|
// return value records whether the signature is valid.
|
||||||
|
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
|
||||||
|
if strings.EqualFold(pub.Params().Name, P256().Params().Name) {
|
||||||
|
c := pub.Curve
|
||||||
|
N := c.Params().N
|
||||||
|
|
||||||
|
if r.Sign() <= 0 || s.Sign() <= 0 {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
e := hashToInt(hash, c)
|
||||||
|
t := new(big.Int).Add(r, s)
|
||||||
|
t.Mod(t, N)
|
||||||
|
if t.Sign() == 0 {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
|
||||||
|
var x *big.Int
|
||||||
|
x1, y1 := c.ScalarBaseMult(s.Bytes())
|
||||||
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
|
||||||
|
x, _ = c.Add(x1, y1, x2, y2)
|
||||||
|
|
||||||
|
x.Add(x, e)
|
||||||
|
x.Mod(x, N)
|
||||||
|
return x.Cmp(r) == 0
|
||||||
|
}
|
||||||
|
return ecdsa.Verify(pub, hash, r, s)
|
||||||
|
}
|
||||||
|
|
||||||
|
// VerifyWithSM2 verifies the signature in r, s of hash using the public key, pub. Its
|
||||||
|
// return value records whether the signature is valid.
|
||||||
|
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
|
||||||
|
za, err := CalculateZA(pub, uid)
|
||||||
|
if err != nil {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
hasher := sm3.New()
|
||||||
|
hasher.Write(za)
|
||||||
|
hasher.Write(msg)
|
||||||
|
return Verify(pub, hasher.Sum(nil), r, s)
|
||||||
|
}
|
||||||
|
|
||||||
|
type zr struct {
|
||||||
|
io.Reader
|
||||||
|
}
|
||||||
|
|
||||||
|
// Read replaces the contents of dst with zeros.
|
||||||
|
func (z *zr) Read(dst []byte) (n int, err error) {
|
||||||
|
for i := range dst {
|
||||||
|
dst[i] = 0
|
||||||
|
}
|
||||||
|
return len(dst), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
var zeroReader = &zr{}
|
||||||
|
@ -8,6 +8,8 @@ import (
|
|||||||
"math/big"
|
"math/big"
|
||||||
"reflect"
|
"reflect"
|
||||||
"testing"
|
"testing"
|
||||||
|
|
||||||
|
"github.com/emmansun/gmsm/sm3"
|
||||||
)
|
)
|
||||||
|
|
||||||
func Test_kdf(t *testing.T) {
|
func Test_kdf(t *testing.T) {
|
||||||
@ -29,7 +31,7 @@ func Test_kdf(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func Test_encryptDecrypt(t *testing.T) {
|
func Test_encryptDecrypt(t *testing.T) {
|
||||||
priv, _ := ecdsa.GenerateKey(P256(), rand.Reader)
|
priv, _ := GenerateKey(rand.Reader)
|
||||||
tests := []struct {
|
tests := []struct {
|
||||||
name string
|
name string
|
||||||
plainText string
|
plainText string
|
||||||
@ -56,6 +58,32 @@ func Test_encryptDecrypt(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func Test_signVerify(t *testing.T) {
|
||||||
|
priv, _ := GenerateKey(rand.Reader)
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
plainText string
|
||||||
|
}{
|
||||||
|
// TODO: Add test cases.
|
||||||
|
{"less than 32", "encryption standard"},
|
||||||
|
{"equals 32", "encryption standard encryption "},
|
||||||
|
{"long than 32", "encryption standard encryption standard"},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
hash := sm3.Sum([]byte(tt.plainText))
|
||||||
|
r, s, err := Sign(rand.Reader, &priv.PrivateKey, hash[:])
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("sign failed %v", err)
|
||||||
|
}
|
||||||
|
result := Verify(&priv.PublicKey, hash[:], r, s)
|
||||||
|
if !result {
|
||||||
|
t.Fatal("verify failed")
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func benchmarkEncrypt(b *testing.B, curve elliptic.Curve, plaintext string) {
|
func benchmarkEncrypt(b *testing.B, curve elliptic.Curve, plaintext string) {
|
||||||
for i := 0; i < b.N; i++ {
|
for i := 0; i < b.N; i++ {
|
||||||
priv, _ := ecdsa.GenerateKey(curve, rand.Reader)
|
priv, _ := ecdsa.GenerateKey(curve, rand.Reader)
|
||||||
|
28
sm2/util.go
28
sm2/util.go
@ -4,8 +4,10 @@ import (
|
|||||||
"crypto/elliptic"
|
"crypto/elliptic"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
|
"io"
|
||||||
"math/big"
|
"math/big"
|
||||||
"strings"
|
"strings"
|
||||||
|
"sync"
|
||||||
)
|
)
|
||||||
|
|
||||||
var zero = big.NewInt(0)
|
var zero = big.NewInt(0)
|
||||||
@ -113,3 +115,29 @@ func bytes2Point(curve elliptic.Curve, bytes []byte) (*big.Int, *big.Int, int, e
|
|||||||
}
|
}
|
||||||
return nil, nil, 0, fmt.Errorf("unknown bytes format %d", format)
|
return nil, nil, 0, fmt.Errorf("unknown bytes format %d", format)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
var (
|
||||||
|
closedChanOnce sync.Once
|
||||||
|
closedChan chan struct{}
|
||||||
|
)
|
||||||
|
|
||||||
|
// maybeReadByte reads a single byte from r with ~50% probability. This is used
|
||||||
|
// to ensure that callers do not depend on non-guaranteed behaviour, e.g.
|
||||||
|
// assuming that rsa.GenerateKey is deterministic w.r.t. a given random stream.
|
||||||
|
//
|
||||||
|
// This does not affect tests that pass a stream of fixed bytes as the random
|
||||||
|
// source (e.g. a zeroReader).
|
||||||
|
func maybeReadByte(r io.Reader) {
|
||||||
|
closedChanOnce.Do(func() {
|
||||||
|
closedChan = make(chan struct{})
|
||||||
|
close(closedChan)
|
||||||
|
})
|
||||||
|
|
||||||
|
select {
|
||||||
|
case <-closedChan:
|
||||||
|
return
|
||||||
|
case <-closedChan:
|
||||||
|
var buf [1]byte
|
||||||
|
r.Read(buf[:])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@ -29,6 +29,12 @@ type pkcs1PublicKey struct {
|
|||||||
E int
|
E int
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type dsaSignature struct {
|
||||||
|
R, S *big.Int
|
||||||
|
}
|
||||||
|
|
||||||
|
type ecdsaSignature dsaSignature
|
||||||
|
|
||||||
// http://gmssl.org/docs/oid.html
|
// http://gmssl.org/docs/oid.html
|
||||||
var (
|
var (
|
||||||
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
|
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
|
||||||
|
@ -3,8 +3,12 @@ package sm2
|
|||||||
import (
|
import (
|
||||||
"crypto/ecdsa"
|
"crypto/ecdsa"
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
|
"encoding/asn1"
|
||||||
|
"encoding/base64"
|
||||||
|
"encoding/hex"
|
||||||
"encoding/pem"
|
"encoding/pem"
|
||||||
"errors"
|
"errors"
|
||||||
|
"fmt"
|
||||||
"strings"
|
"strings"
|
||||||
"testing"
|
"testing"
|
||||||
)
|
)
|
||||||
@ -15,6 +19,14 @@ MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAELfjZP28bYfGSvbODYlXiB5bcoXE+
|
|||||||
-----END PUBLIC KEY-----
|
-----END PUBLIC KEY-----
|
||||||
`
|
`
|
||||||
|
|
||||||
|
const publicKeyPemFromAliKmsForSign = `-----BEGIN PUBLIC KEY-----
|
||||||
|
MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAERrsLH25zLm2LIo6tivZM9afLprSX
|
||||||
|
6TCKAmQJArAO7VOtZyW4PQwfaTsUIF7IXEFG4iI8bNuTQwMykUzLu2ypEA==
|
||||||
|
-----END PUBLIC KEY-----
|
||||||
|
`
|
||||||
|
const hashBase64 = `Zsfw9GLu7dnR8tRr3BDk4kFnxIdc8veiKX2gK49LqOA=`
|
||||||
|
const signature = `MEUCIHV5hOCgYzlO4HkrUhct1Cc8BeKmbXNP+ASje5rGOcCYAiEA2XOajXo3/IihtCEJmNpImtWw3uHIy5CX5TIxit7V0gQ=`
|
||||||
|
|
||||||
func getPublicKey(pemContent []byte) (interface{}, error) {
|
func getPublicKey(pemContent []byte) (interface{}, error) {
|
||||||
block, _ := pem.Decode(pemContent)
|
block, _ := pem.Decode(pemContent)
|
||||||
if block == nil {
|
if block == nil {
|
||||||
@ -23,16 +35,41 @@ func getPublicKey(pemContent []byte) (interface{}, error) {
|
|||||||
return ParsePKIXPublicKey(block.Bytes)
|
return ParsePKIXPublicKey(block.Bytes)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestSignByAliVerifyAtLocal(t *testing.T) {
|
||||||
|
var rs = &ecdsaSignature{}
|
||||||
|
dig, err := base64.StdEncoding.DecodeString(signature)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
rest, err := asn1.Unmarshal(dig, rs)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
if len(rest) != 0 {
|
||||||
|
t.Errorf("rest len=%d", len(rest))
|
||||||
|
}
|
||||||
|
|
||||||
|
fmt.Printf("r=%s, s=%s\n", hex.EncodeToString(rs.R.Bytes()), hex.EncodeToString(rs.S.Bytes()))
|
||||||
|
pub, err := getPublicKey([]byte(publicKeyPemFromAliKmsForSign))
|
||||||
|
pub1 := pub.(*ecdsa.PublicKey)
|
||||||
|
hashValue, _ := base64.StdEncoding.DecodeString(hashBase64)
|
||||||
|
result := Verify(pub1, hashValue, rs.R, rs.S)
|
||||||
|
if !result {
|
||||||
|
t.Error("Verify fail")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func TestParsePKIXPublicKey(t *testing.T) {
|
func TestParsePKIXPublicKey(t *testing.T) {
|
||||||
pub, err := getPublicKey([]byte(publicKeyPemFromAliKms))
|
pub, err := getPublicKey([]byte(publicKeyPemFromAliKms))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
pub1 := pub.(*ecdsa.PublicKey)
|
pub1 := pub.(*ecdsa.PublicKey)
|
||||||
_, err = Encrypt(rand.Reader, pub1, []byte("testfile"))
|
encrypted, err := Encrypt(rand.Reader, pub1, []byte("testfile"))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
fmt.Printf("encrypted=%s\n", base64.StdEncoding.EncodeToString(encrypted))
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestMarshalPKIXPublicKey(t *testing.T) {
|
func TestMarshalPKIXPublicKey(t *testing.T) {
|
||||||
|
@ -3,6 +3,7 @@ package sm3
|
|||||||
import (
|
import (
|
||||||
"bytes"
|
"bytes"
|
||||||
"encoding"
|
"encoding"
|
||||||
|
"encoding/base64"
|
||||||
"fmt"
|
"fmt"
|
||||||
"hash"
|
"hash"
|
||||||
"io"
|
"io"
|
||||||
@ -23,7 +24,9 @@ var golden = []sm3Test{
|
|||||||
func TestGolden(t *testing.T) {
|
func TestGolden(t *testing.T) {
|
||||||
for i := 0; i < len(golden); i++ {
|
for i := 0; i < len(golden); i++ {
|
||||||
g := golden[i]
|
g := golden[i]
|
||||||
s := fmt.Sprintf("%x", Sum([]byte(g.in)))
|
h := Sum([]byte(g.in))
|
||||||
|
s := fmt.Sprintf("%x", h)
|
||||||
|
fmt.Printf("%s\n", base64.StdEncoding.EncodeToString(h[:]))
|
||||||
if s != g.out {
|
if s != g.out {
|
||||||
t.Fatalf("SM3 function: sm3(%s) = %s want %s", g.in, s, g.out)
|
t.Fatalf("SM3 function: sm3(%s) = %s want %s", g.in, s, g.out)
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user