MAGIC - sm2+sm3 ECDSA sign and verify

This commit is contained in:
Emman 2021-01-25 16:18:37 +08:00
parent cf6789f2f9
commit 086d9d206e
6 changed files with 354 additions and 4 deletions

View File

@ -1,13 +1,19 @@
package sm2 package sm2
import ( import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa" "crypto/ecdsa"
"crypto/elliptic" "crypto/elliptic"
"crypto/sha512"
"encoding/asn1"
"encoding/binary" "encoding/binary"
"errors" "errors"
"fmt" "fmt"
"io" "io"
"math/big" "math/big"
"strings"
"github.com/emmansun/gmsm/sm3" "github.com/emmansun/gmsm/sm3"
) )
@ -20,6 +26,27 @@ const (
mixed07 byte = 0x07 mixed07 byte = 0x07
) )
// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
ecdsa.PrivateKey
}
// Sign signs digest with priv, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface,
// should be the hash function used to digest the message.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses should use the Sign function in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
r, s, err := Sign(rand, &priv.PrivateKey, digest)
if err != nil {
return nil, err
}
return asn1.Marshal(ecdsaSignature{r, s})
}
///////////////// below code ship from golan crypto/ecdsa //////////////////// ///////////////// below code ship from golan crypto/ecdsa ////////////////////
var one = new(big.Int).SetInt64(1) var one = new(big.Int).SetInt64(1)
@ -111,8 +138,23 @@ func Encrypt(random io.Reader, pub *ecdsa.PublicKey, msg []byte) ([]byte, error)
} }
} }
// GenerateKey generates a public and private key pair.
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
c := P256()
k, err := randFieldElement(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return priv, nil
}
// Decrypt sm2 decrypt implementation // Decrypt sm2 decrypt implementation
func Decrypt(priv *ecdsa.PrivateKey, ciphertext []byte) ([]byte, error) { func Decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
ciphertextLen := len(ciphertext) ciphertextLen := len(ciphertext)
if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size { if ciphertextLen <= 1+(priv.Params().BitSize/8)+sm3.Size {
return nil, errors.New("invalid ciphertext length") return nil, errors.New("invalid ciphertext length")
@ -153,3 +195,209 @@ func Decrypt(priv *ecdsa.PrivateKey, ciphertext []byte) ([]byte, error) {
return msg, nil return msg, nil
} }
// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
const (
aesIV = "IV for ECDSA CTR"
)
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. The security of the private key
// depends on the entropy of rand.
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
if !strings.EqualFold(priv.Params().Name, P256().Params().Name) {
return ecdsa.Sign(rand, priv, hash)
}
maybeReadByte(rand)
// Get min(log2(q) / 2, 256) bits of entropy from rand.
entropylen := (priv.Curve.Params().BitSize + 7) / 16
if entropylen > 32 {
entropylen = 32
}
entropy := make([]byte, entropylen)
_, err = io.ReadFull(rand, entropy)
if err != nil {
return
}
// Initialize an SHA-512 hash context; digest ...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
csprng := cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
if N.Sign() == 0 {
return nil, nil, errZeroParam
}
var k *big.Int
e := hashToInt(hash, c)
for {
for {
k, err = randFieldElement(c, csprng)
if err != nil {
r = nil
return
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) // (x, y) = k*G
r.Add(r, e) // r = x + e
r.Mod(r, N) // r = (x + e) mod N
if r.Sign() != 0 {
t := new(big.Int).Add(r, k)
if t.Cmp(N) != 0 { // if r != 0 && (r + k) != N then ok
break
}
}
}
s = new(big.Int).Mul(priv.D, r)
s = new(big.Int).Sub(k, s)
dp1 := new(big.Int).Add(priv.D, one)
dp1Inv := new(big.Int).ModInverse(dp1, N)
s.Mul(s, dp1Inv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return
}
var defaultUID = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
// CalculateZA ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
func CalculateZA(pub *ecdsa.PublicKey, uid []byte) ([]byte, error) {
uidLen := len(uid)
if uidLen >= 0x2000 {
return nil, errors.New("the uid is too long")
}
entla := uint16(uidLen) << 3
hasher := sm3.New()
hasher.Write([]byte{byte(entla >> 8), byte(entla)})
if uidLen > 0 {
hasher.Write(uid)
}
a := new(big.Int).Sub(pub.Params().P, big.NewInt(3))
hasher.Write(toBytes(pub.Curve, a))
hasher.Write(toBytes(pub.Curve, pub.Params().B))
hasher.Write(toBytes(pub.Curve, pub.Params().Gx))
hasher.Write(toBytes(pub.Curve, pub.Params().Gy))
hasher.Write(toBytes(pub.Curve, pub.X))
hasher.Write(toBytes(pub.Curve, pub.Y))
return hasher.Sum(nil), nil
}
// SignWithSM2 follow sm2 dsa standards for hash part
func SignWithSM2(rand io.Reader, priv *ecdsa.PrivateKey, uid, msg []byte) (r, s *big.Int, err error) {
za, err := CalculateZA(&priv.PublicKey, uid)
if err != nil {
return nil, nil, err
}
hasher := sm3.New()
hasher.Write(za)
hasher.Write(msg)
return Sign(rand, priv, hasher.Sum(nil))
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid.
func Verify(pub *ecdsa.PublicKey, hash []byte, r, s *big.Int) bool {
if strings.EqualFold(pub.Params().Name, P256().Params().Name) {
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
e := hashToInt(hash, c)
t := new(big.Int).Add(r, s)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
x1, y1 := c.ScalarBaseMult(s.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
x, _ = c.Add(x1, y1, x2, y2)
x.Add(x, e)
x.Mod(x, N)
return x.Cmp(r) == 0
}
return ecdsa.Verify(pub, hash, r, s)
}
// VerifyWithSM2 verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid.
func VerifyWithSM2(pub *ecdsa.PublicKey, uid, msg []byte, r, s *big.Int) bool {
za, err := CalculateZA(pub, uid)
if err != nil {
return false
}
hasher := sm3.New()
hasher.Write(za)
hasher.Write(msg)
return Verify(pub, hasher.Sum(nil), r, s)
}
type zr struct {
io.Reader
}
// Read replaces the contents of dst with zeros.
func (z *zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
var zeroReader = &zr{}

View File

@ -8,6 +8,8 @@ import (
"math/big" "math/big"
"reflect" "reflect"
"testing" "testing"
"github.com/emmansun/gmsm/sm3"
) )
func Test_kdf(t *testing.T) { func Test_kdf(t *testing.T) {
@ -29,7 +31,7 @@ func Test_kdf(t *testing.T) {
} }
func Test_encryptDecrypt(t *testing.T) { func Test_encryptDecrypt(t *testing.T) {
priv, _ := ecdsa.GenerateKey(P256(), rand.Reader) priv, _ := GenerateKey(rand.Reader)
tests := []struct { tests := []struct {
name string name string
plainText string plainText string
@ -56,6 +58,32 @@ func Test_encryptDecrypt(t *testing.T) {
} }
} }
func Test_signVerify(t *testing.T) {
priv, _ := GenerateKey(rand.Reader)
tests := []struct {
name string
plainText string
}{
// TODO: Add test cases.
{"less than 32", "encryption standard"},
{"equals 32", "encryption standard encryption "},
{"long than 32", "encryption standard encryption standard"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
hash := sm3.Sum([]byte(tt.plainText))
r, s, err := Sign(rand.Reader, &priv.PrivateKey, hash[:])
if err != nil {
t.Fatalf("sign failed %v", err)
}
result := Verify(&priv.PublicKey, hash[:], r, s)
if !result {
t.Fatal("verify failed")
}
})
}
}
func benchmarkEncrypt(b *testing.B, curve elliptic.Curve, plaintext string) { func benchmarkEncrypt(b *testing.B, curve elliptic.Curve, plaintext string) {
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
priv, _ := ecdsa.GenerateKey(curve, rand.Reader) priv, _ := ecdsa.GenerateKey(curve, rand.Reader)

View File

@ -4,8 +4,10 @@ import (
"crypto/elliptic" "crypto/elliptic"
"errors" "errors"
"fmt" "fmt"
"io"
"math/big" "math/big"
"strings" "strings"
"sync"
) )
var zero = big.NewInt(0) var zero = big.NewInt(0)
@ -113,3 +115,29 @@ func bytes2Point(curve elliptic.Curve, bytes []byte) (*big.Int, *big.Int, int, e
} }
return nil, nil, 0, fmt.Errorf("unknown bytes format %d", format) return nil, nil, 0, fmt.Errorf("unknown bytes format %d", format)
} }
var (
closedChanOnce sync.Once
closedChan chan struct{}
)
// maybeReadByte reads a single byte from r with ~50% probability. This is used
// to ensure that callers do not depend on non-guaranteed behaviour, e.g.
// assuming that rsa.GenerateKey is deterministic w.r.t. a given random stream.
//
// This does not affect tests that pass a stream of fixed bytes as the random
// source (e.g. a zeroReader).
func maybeReadByte(r io.Reader) {
closedChanOnce.Do(func() {
closedChan = make(chan struct{})
close(closedChan)
})
select {
case <-closedChan:
return
case <-closedChan:
var buf [1]byte
r.Read(buf[:])
}
}

View File

@ -29,6 +29,12 @@ type pkcs1PublicKey struct {
E int E int
} }
type dsaSignature struct {
R, S *big.Int
}
type ecdsaSignature dsaSignature
// http://gmssl.org/docs/oid.html // http://gmssl.org/docs/oid.html
var ( var (
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1} oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}

View File

@ -3,8 +3,12 @@ package sm2
import ( import (
"crypto/ecdsa" "crypto/ecdsa"
"crypto/rand" "crypto/rand"
"encoding/asn1"
"encoding/base64"
"encoding/hex"
"encoding/pem" "encoding/pem"
"errors" "errors"
"fmt"
"strings" "strings"
"testing" "testing"
) )
@ -15,6 +19,14 @@ MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAELfjZP28bYfGSvbODYlXiB5bcoXE+
-----END PUBLIC KEY----- -----END PUBLIC KEY-----
` `
const publicKeyPemFromAliKmsForSign = `-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAERrsLH25zLm2LIo6tivZM9afLprSX
6TCKAmQJArAO7VOtZyW4PQwfaTsUIF7IXEFG4iI8bNuTQwMykUzLu2ypEA==
-----END PUBLIC KEY-----
`
const hashBase64 = `Zsfw9GLu7dnR8tRr3BDk4kFnxIdc8veiKX2gK49LqOA=`
const signature = `MEUCIHV5hOCgYzlO4HkrUhct1Cc8BeKmbXNP+ASje5rGOcCYAiEA2XOajXo3/IihtCEJmNpImtWw3uHIy5CX5TIxit7V0gQ=`
func getPublicKey(pemContent []byte) (interface{}, error) { func getPublicKey(pemContent []byte) (interface{}, error) {
block, _ := pem.Decode(pemContent) block, _ := pem.Decode(pemContent)
if block == nil { if block == nil {
@ -23,16 +35,41 @@ func getPublicKey(pemContent []byte) (interface{}, error) {
return ParsePKIXPublicKey(block.Bytes) return ParsePKIXPublicKey(block.Bytes)
} }
func TestSignByAliVerifyAtLocal(t *testing.T) {
var rs = &ecdsaSignature{}
dig, err := base64.StdEncoding.DecodeString(signature)
if err != nil {
t.Fatal(err)
}
rest, err := asn1.Unmarshal(dig, rs)
if err != nil {
t.Fatal(err)
}
if len(rest) != 0 {
t.Errorf("rest len=%d", len(rest))
}
fmt.Printf("r=%s, s=%s\n", hex.EncodeToString(rs.R.Bytes()), hex.EncodeToString(rs.S.Bytes()))
pub, err := getPublicKey([]byte(publicKeyPemFromAliKmsForSign))
pub1 := pub.(*ecdsa.PublicKey)
hashValue, _ := base64.StdEncoding.DecodeString(hashBase64)
result := Verify(pub1, hashValue, rs.R, rs.S)
if !result {
t.Error("Verify fail")
}
}
func TestParsePKIXPublicKey(t *testing.T) { func TestParsePKIXPublicKey(t *testing.T) {
pub, err := getPublicKey([]byte(publicKeyPemFromAliKms)) pub, err := getPublicKey([]byte(publicKeyPemFromAliKms))
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
pub1 := pub.(*ecdsa.PublicKey) pub1 := pub.(*ecdsa.PublicKey)
_, err = Encrypt(rand.Reader, pub1, []byte("testfile")) encrypted, err := Encrypt(rand.Reader, pub1, []byte("testfile"))
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
fmt.Printf("encrypted=%s\n", base64.StdEncoding.EncodeToString(encrypted))
} }
func TestMarshalPKIXPublicKey(t *testing.T) { func TestMarshalPKIXPublicKey(t *testing.T) {

View File

@ -3,6 +3,7 @@ package sm3
import ( import (
"bytes" "bytes"
"encoding" "encoding"
"encoding/base64"
"fmt" "fmt"
"hash" "hash"
"io" "io"
@ -23,7 +24,9 @@ var golden = []sm3Test{
func TestGolden(t *testing.T) { func TestGolden(t *testing.T) {
for i := 0; i < len(golden); i++ { for i := 0; i < len(golden); i++ {
g := golden[i] g := golden[i]
s := fmt.Sprintf("%x", Sum([]byte(g.in))) h := Sum([]byte(g.in))
s := fmt.Sprintf("%x", h)
fmt.Printf("%s\n", base64.StdEncoding.EncodeToString(h[:]))
if s != g.out { if s != g.out {
t.Fatalf("SM3 function: sm3(%s) = %s want %s", g.in, s, g.out) t.Fatalf("SM3 function: sm3(%s) = %s want %s", g.in, s, g.out)
} }