You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
vlmcsd/src/kms.c

1203 lines
35 KiB
C

#ifndef CONFIG
#define CONFIG "config.h"
#endif // CONFIG
#include CONFIG
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <ctype.h>
#include <time.h>
#if !defined(_WIN32)
#if !__ANDROID__
#include <sys/shm.h>
#endif // !__ANDROID__
#include <sys/socket.h>
#include <sys/ipc.h>
#endif // !defined(_WIN32)
#include "output.h"
#include "crypto.h"
#include "endian.h"
#include "kms.h"
#include "shared_globals.h"
#include "helpers.h"
#define FRIENDLY_NAME_WINDOWS "Windows"
#define FRIENDLY_NAME_OFFICE2010 "Office 2010"
#define FRIENDLY_NAME_OFFICE2013 "Office 2013+"
#ifndef IS_LIBRARY
#ifdef NO_LOG
#define LOGTEXT(x) ""
#else //!NO_LOG
#define LOGTEXT(x) x
#endif // !NO_LOG
int32_t getProductIndex(const GUID* guid, const PVlmcsdData_t list, const int32_t count, char** name, char** ePid)
{
int i;
for (i = count - 1; i >= 0; i--)
{
if (IsEqualGUID(guid, &list[i].Guid))
{
if (name) *name = list[i].Name;
if (ePid) *ePid = KmsData->CsvlkData[list[i].EPidIndex].EPid;
return i;
}
}
if (name) *name = (char*)"Unknown";
if (ePid) *ePid = KmsData->CsvlkData->EPid;
return i;
}
#if !defined(NO_INI_FILE)||!defined(NO_VERBOSE_LOG)
const char* getNextString(const char* s)
{
return s + strlen(s) + 1;
}
#endif //!defined(NO_INI_FILE)||!defined(NO_VERBOSE_LOG)
#endif // IS_LIBRARY
#ifndef NO_RANDOM_EPID
//static const uint16_t HostBuilds[] = { 6002, 7601, 9200, 9600, 14393, 17763 };
// Valid language identifiers to be used in the ePID
static const uint16_t LcidList[] = {
1078, 1052, 1025, 2049, 3073, 4097, 5121, 6145, 7169, 8193, 9217, 10241, 11265, 12289, 13313, 14337, 15361, 16385,
1067, 1068, 2092, 1069, 1059, 1093, 5146, 1026, 1027, 1028, 2052, 3076, 4100, 5124, 1050, 4122, 1029, 1030, 1125, 1043, 2067,
1033, 2057, 3081, 4105, 5129, 6153, 7177, 8201, 9225, 10249, 11273, 12297, 13321, 1061, 1080, 1065, 1035, 1036, 2060,
3084, 4108, 5132, 6156, 1079, 1110, 1031, 2055, 3079, 4103, 5127, 1032, 1095, 1037, 1081, 1038, 1039, 1057, 1040, 2064, 1041, 1099,
1087, 1111, 1042, 1088, 1062, 1063, 1071, 1086, 2110, 1100, 1082, 1153, 1102, 1104, 1044, 2068, 1045, 1046, 2070,
1094, 1131, 2155, 3179, 1048, 1049, 9275, 4155, 5179, 3131, 1083, 2107, 8251, 6203, 7227, 1103, 2074, 6170, 3098,
7194, 1051, 1060, 1034, 2058, 3082, 4106, 5130, 6154, 7178, 8202, 9226, 10250, 11274, 12298, 13322, 14346, 15370, 16394,
17418, 18442, 19466, 20490, 1089, 1053, 2077, 1114, 1097, 1092, 1098, 1054, 1074, 1058, 1056, 1091, 2115, 1066, 1106, 1076, 1077
};
int32_t getPlatformId(int32_t hostBuild)
{
int32_t i;
for (i = 0; i < KmsData->HostBuildCount; i++)
{
if (KmsData->HostBuildList[i].BuildNumber <= hostBuild)
{
return KmsData->HostBuildList[i].PlatformId;
}
}
return KmsData->HostBuildList[KmsData->HostBuildCount - 1].PlatformId;
}
time_t getReleaseDate(int32_t hostBuild)
{
int32_t i;
for (i = KmsData->HostBuildCount - 1; i >= 0; i--)
{
if (KmsData->HostBuildList[i].BuildNumber >= hostBuild)
{
return (time_t)KmsData->HostBuildList[i].ReleaseDate;
}
}
return (time_t)KmsData->HostBuildList->ReleaseDate;
}
#ifdef _PEDANTIC
uint16_t IsValidLcid(const uint16_t lcid)
{
uint16_t i;
for (i = 0; i < vlmcsd_countof(LcidList); i++)
{
if (lcid == LcidList[i]) return lcid;
}
return 0;
}
uint32_t IsValidHostBuild(const int32_t hostBuild)
{
PHostBuild_t hostOS;
for (hostOS = KmsData->HostBuildList; hostOS < KmsData->HostBuildList + KmsData->HostBuildCount; hostOS++)
{
if (hostBuild == hostOS->BuildNumber) return hostBuild;
}
return 0;
}
#endif // _PEDANTIC
#endif // NO_RANDOM_EPID
// Unix time is seconds from 1970-01-01. Should be 64 bits to avoid year 2038 overflow bug.
// FILETIME is 100 nanoseconds from 1601-01-01. Must be 64 bits.
void getUnixTimeAsFileTime(FILETIME* ts)
{
const int64_t unixtime = (int64_t)time(NULL);
int64_t *filetime = (int64_t*)ts;
PUT_UA64LE(filetime, (unixtime + 11644473600LL) * 10000000LL);
}
__pure int64_t fileTimeToUnixTime(FILETIME* ts)
{
return GET_UA64LE(ts) / 10000000LL - 11644473600LL;
}
#ifndef NO_STRICT_MODES
#ifndef NO_CLIENT_LIST
static PClientList_t ClientLists;
static BYTE ZeroGuid[16] = { 0 };
#if !defined(_WIN32) && !defined(__CYGWIN__)
pthread_mutex_t* mutex;
#define mutex_size (((sizeof(pthread_mutex_t)+7)>>3)<<3)
#else
CRITICAL_SECTION* mutex;
#define mutex_size (((sizeof(CRITICAL_SECTION)+7)>>3)<<3)
#endif // _WIN32
#ifndef USE_THREADS
static int shmid_clients = -1;
#endif // USE_THREADS
#if !defined(_WIN32) && !defined(__CYGWIN__)
#define lock_client_lists() pthread_mutex_lock(mutex)
#define unlock_client_lists() pthread_mutex_unlock(mutex)
#define mutex_t pthread_mutex_t
#else
#define lock_client_lists() EnterCriticalSection(mutex)
#define unlock_client_lists() LeaveCriticalSection(mutex)
#define mutex_t CRITICAL_SECTION
#endif
void CleanUpClientLists()
{
# ifndef USE_THREADS
shmctl(shmid_clients, IPC_RMID, NULL);
# endif // !USE_THREADS
}
void InitializeClientLists()
{
int_fast8_t i;
int_fast16_t j;
# ifndef USE_THREADS
if (
(shmid_clients = shmget(IPC_PRIVATE, sizeof(ClientList_t) * KmsData->AppItemCount + mutex_size, IPC_CREAT | 0600)) < 0 ||
(mutex = (mutex_t*)shmat(shmid_clients, NULL, 0)) == (mutex_t*)-1
)
{
int errno_save = errno;
printerrorf("Warning: CMID lists disabled. Could not create shared memory: %s\n", vlmcsd_strerror(errno_save));
if (shmid_clients >= 0) shmctl(shmid_clients, IPC_RMID, NULL);
MaintainClients = FALSE;
return;
}
ClientLists = (PClientList_t)((BYTE*)mutex + mutex_size);
# if __CYGWIN__
InitializeCriticalSection(mutex);
# else // !__CYGWIN__
pthread_mutexattr_t mutex_attr;
pthread_mutexattr_init(&mutex_attr);
pthread_mutexattr_setpshared(&mutex_attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(mutex, &mutex_attr);
# endif // !__CYGWIN__
# else // USE_THREADS
ClientLists = (PClientList_t)vlmcsd_malloc(sizeof(ClientList_t) * KmsData->AppItemCount);
mutex = (mutex_t*)vlmcsd_malloc(sizeof(mutex_t));
# if !_WIN32 && !__CYGWIN__
pthread_mutex_init(mutex, NULL);
# else //_WIN32 || __CYGWIN__
InitializeCriticalSection(mutex);
# endif //_WIN32 || __CYGWIN__
# endif // USE_THREADS
memset(ClientLists, 0, sizeof(ClientList_t) * KmsData->AppItemCount);
if (!StartEmpty)
{
for (i = 0; i < KmsData->AppItemCount; i++)
{
const uint8_t maxCount = KmsData->AppItemList[i].NCountPolicy;
ClientLists[i].CurrentCount = (maxCount >> 1) - 1;
ClientLists[i].MaxCount = maxCount;
for (j = 0; j < (maxCount >> 1) - 1; j++)
{
get16RandomBytes(&ClientLists[i].Guid[j]);
}
}
}
}
#endif // NO_CLIENT_LIST
#endif // !NO_STRICT_MODES
#ifndef NO_RANDOM_EPID
// formats an int with a fixed number of digits with leading zeros (helper for ePID generation)
static char* itoc(char *const c, const int i, uint_fast8_t digits)
{
char formatString[8];
if (digits > 9) digits = 0;
strcpy(formatString, "%");
if (digits)
{
formatString[1] = '0';
formatString[2] = digits | 0x30;
formatString[3] = 0;
}
strcat(formatString, "u");
sprintf(c, formatString, i);
return c;
}
static uint8_t getRandomServerType()
{
# if defined(USE_MSRPC) || defined(SIMPLE_RPC)
return rand() % KmsData->HostBuildCount;
# else // !defined(USE_MSRPC) && !defined(SIMPLE_RPC)
while (TRUE)
{
const uint32_t buildIndex = rand() % KmsData->HostBuildCount;
if (!(KmsData->HostBuildList[buildIndex].Flags & UseNdr64) == !UseServerRpcNDR64)
{
return (uint8_t)buildIndex;
}
}
# endif // !defined(USE_MSRPC) && !defined(SIMPLE_RPC)
}
/*
* Generates a random ePID
*/
static void generateRandomPid(const int index, char *const szPid, int16_t lang, int32_t hostBuild)
{
char numberBuffer[12];
if (!hostBuild)
{
hostBuild = KmsData->HostBuildList[getRandomServerType()].BuildNumber;
}
strcpy(szPid, itoc(numberBuffer, getPlatformId(hostBuild), 5));
strcat(szPid, "-");
//if (index > 3) index = 0;
PCsvlkData_t csvlkData = &KmsData->CsvlkData[index];
strcat(szPid, itoc(numberBuffer, csvlkData->GroupId, 5));
strcat(szPid, "-");
const int keyId = (rand32() % (csvlkData->MaxKeyId - csvlkData->MinKeyId)) + csvlkData->MinKeyId;
strcat(szPid, itoc(numberBuffer, keyId / 1000000, 3));
strcat(szPid, "-");
strcat(szPid, itoc(numberBuffer, keyId % 1000000, 6));
strcat(szPid, "-03-");
if (lang < 1) lang = LcidList[rand() % vlmcsd_countof(LcidList)];
strcat(szPid, itoc(numberBuffer, lang, 0));
strcat(szPid, "-");
strcat(szPid, itoc(numberBuffer, hostBuild, 0));
strcat(szPid, ".0000-");
const time_t hostBuildReleaseDate = getReleaseDate(hostBuild);
const time_t minTime = csvlkData->ReleaseDate < hostBuildReleaseDate ? hostBuildReleaseDate : csvlkData->ReleaseDate;
time_t maxTime;
time(&maxTime);
# ifndef BUILD_TIME
# define BUILD_TIME 1538922811
# endif
if (maxTime < (time_t)BUILD_TIME) // Just in case the system time is < 10/17/2013 1:00 pm
maxTime = (time_t)BUILD_TIME;
time_t kmsTime = (rand32() % (maxTime - minTime)) + minTime;
struct tm *pidTime = gmtime(&kmsTime);
strcat(szPid, itoc(numberBuffer, pidTime->tm_yday + 1, 3));
strcat(szPid, itoc(numberBuffer, pidTime->tm_year + 1900, 4));
}
/*
* Generates random ePIDs and stores them if not already read from ini file.
* For use with randomization level 1
*/
void randomPidInit()
{
uint32_t i;
const int16_t lang = Lcid ? Lcid : LcidList[rand() % vlmcsd_countof(LcidList)];
for (i = 0; i < KmsData->CsvlkCount; i++)
{
if (KmsResponseParameters[i].Epid) continue;
char Epid[PID_BUFFER_SIZE];
if (!HostBuild)
{
uint8_t index;
#if defined(USE_MSRPC) || defined(SIMPLE_RPC)
index = getRandomServerType();
#else // !(defined(USE_MSRPC) || defined(SIMPLE_RPC))
if (IsNDR64Defined)
{
index = getRandomServerType();
}
else
{
index = (uint8_t)(rand() % KmsData->HostBuildCount);
UseServerRpcNDR64 = !!(KmsData->HostBuildList[index].Flags & UseNdr64);
}
#endif // !(defined(USE_MSRPC) || defined(SIMPLE_RPC))
HostBuild = (uint16_t)KmsData->HostBuildList[index].BuildNumber;
}
generateRandomPid(i, Epid, lang, HostBuild);
KmsResponseParameters[i].Epid = (const char*)vlmcsd_strdup(Epid);
#ifndef NO_LOG
KmsResponseParameters[i].EpidSource = "randomized at program start";
KmsResponseParameters[i].IsRandom = TRUE;
#endif // NO_LOG
}
}
#endif // NO_RANDOM_EPID
#ifndef NO_LOG
static int32_t getProductIndexFromAllLists(const GUID* guid, char** productName)
{
return getProductIndex(guid, KmsData->AppItemList, KmsData->AppItemCount + KmsData->KmsItemCount + KmsData->SkuItemCount, productName, NULL);
}
/*
* Logs a Request
*/
static void logRequest(REQUEST* baseRequest)
{
#ifndef NO_VERBOSE_LOG
if (logverbose)
{
logger("<<< Incoming KMS request\n");
logRequestVerbose(baseRequest, &logger);
return;
}
#endif // NO_VERBOSE_LOG
char *productName;
char clientName[64];
int32_t index = getProductIndexFromAllLists(&baseRequest->ActID, &productName);
if (index < 0) index = getProductIndexFromAllLists(&baseRequest->KMSID, &productName);
if (index < 0) index = getProductIndexFromAllLists(&baseRequest->AppID, &productName);
if (index < 0 || !strcasecmp(productName, "Unknown"))
{
productName = (char*)alloca(GUID_STRING_LENGTH + 1);
uuid2StringLE(&baseRequest->ActID, productName);
}
ucs2_to_utf8(baseRequest->WorkstationName, clientName, 64, 64);
logger("KMS v%i.%i request from %s for %s\n", LE16(baseRequest->MajorVer), LE16(baseRequest->MinorVer), clientName, productName);
}
#endif // NO_LOG
/*
* Converts a utf-8 ePID string to UCS-2 and writes it to a RESPONSE struct
*/
#ifndef IS_LIBRARY
static void getEpidFromString(RESPONSE *const Response, const char *const pid)
{
const size_t length = utf8_to_ucs2(Response->KmsPID, pid, PID_BUFFER_SIZE, PID_BUFFER_SIZE * 3);
Response->PIDSize = LE32(((unsigned int)length + 1) << 1);
}
/*
* get ePID from appropriate source
*/
static void getEpid(RESPONSE *const baseResponse, const char** EpidSource, const int32_t index, BYTE *const HwId, const char* defaultEPid)
{
#if !defined(NO_RANDOM_EPID) || !defined(NO_CL_PIDS) || !defined(NO_INI_FILE)
const char* pid;
if (KmsResponseParameters[index].Epid == NULL)
{
#ifndef NO_RANDOM_EPID
if (RandomizationLevel == 2)
{
char ePid[PID_BUFFER_SIZE];
generateRandomPid(index, ePid, Lcid, HostBuild);
pid = ePid;
#ifndef NO_LOG
*EpidSource = "randomized on every request";
#endif // NO_LOG
}
else
#endif // NO_RANDOM_EPID
{
pid = defaultEPid;
#ifndef NO_LOG
*EpidSource = "vlmcsd default";
#endif // NO_LOG
}
}
else
{
pid = KmsResponseParameters[index].Epid;
if (HwId && KmsResponseParameters[index].HwId != NULL)
memcpy(HwId, KmsResponseParameters[index].HwId, sizeof(((RESPONSE_V6 *)0)->HwId));
#ifndef NO_LOG
*EpidSource = KmsResponseParameters[index].EpidSource;
#endif // NO_LOG
}
getEpidFromString(baseResponse, pid);
#else // defined(NO_RANDOM_EPID) && defined(NO_CL_PIDS) && !defined(NO_INI_FILE)
getEpidFromString(baseResponse, defaultEPid);
# ifndef NO_LOG
*EpidSource = "vlmcsd default";
# endif // NO_LOG
#endif // defined(NO_RANDOM_EPID) && defined(NO_CL_PIDS) && !defined(NO_INI_FILE)
}
#endif // IS_LIBRARY
#if !defined(NO_LOG) && defined(_PEDANTIC)
static BOOL CheckVersion4Uuid(const GUID *const guid, const char *const szGuidName)
{
if (LE16(guid->Data3) >> 12 != 4 || guid->Data4[0] >> 6 != 2)
{
logger("Warning: %s does not conform to version 4 UUID according to RFC 4122\n", szGuidName);
return FALSE;
}
return TRUE;
}
static void CheckRequest(const REQUEST *const Request)
{
CheckVersion4Uuid(&Request->CMID, "Client machine ID");
CheckVersion4Uuid(&Request->AppID, "Application ID");
CheckVersion4Uuid(&Request->KMSID, "Server SKU ID");
CheckVersion4Uuid(&Request->ActID, "Client SKU ID");
if (LE32(Request->IsClientVM) > 1)
logger("Warning: Virtual Machine field in request must be 0 or 1 but is %u\n", LE32(Request->IsClientVM));
if (LE32(Request->LicenseStatus) > 6)
logger("Warning: License status must be between 0 and 6 but is %u\n", LE32(Request->LicenseStatus));
}
#endif // !defined(NO_LOG) && defined(_PEDANTIC)
#ifndef NO_LOG
/*
* Logs the Response
*/
static void logResponse(RESPONSE* baseResponse, const BYTE *const hwId, const char *const EpidSource)
{
char utf8pid[PID_BUFFER_SIZE * 3];
ucs2_to_utf8(baseResponse->KmsPID, utf8pid, PID_BUFFER_SIZE, PID_BUFFER_SIZE * 3);
#ifndef NO_VERBOSE_LOG
if (!logverbose)
{
#endif // NO_VERBOSE_LOG
logger("Sending ePID (%s): %s\n", EpidSource, utf8pid);
#ifndef NO_VERBOSE_LOG
}
else
{
logger(">>> Sending response, ePID source = %s\n", EpidSource);
logResponseVerbose(utf8pid, hwId, baseResponse, &logger);
}
#endif // NO_VERBOSE_LOG
}
#endif
#if __UCLIBC__ && !defined(NO_STRICT_MODES)
long long int llabs(long long int j);
#endif
/*
* Creates the unencrypted base response
*/
#ifndef IS_LIBRARY
static HRESULT __stdcall CreateResponseBaseCallback(REQUEST* baseRequest, RESPONSE *const baseResponse, BYTE *const hwId, const char* const ipstr_unused)
{
const char* EpidSource;
#ifndef NO_LOG
logRequest(baseRequest);
#ifdef _PEDANTIC
CheckRequest(baseRequest);
#endif // _PEDANTIC
#endif // NO_LOG
char* ePid;
const DWORD minClients = LE32(baseRequest->N_Policy);
const DWORD required_clients = minClients < 1 ? 1 : minClients << 1;
const int32_t index = getProductIndex(&baseRequest->KMSID, KmsData->KmsItemList, KmsData->KmsItemCount, NULL, &ePid);
# ifndef NO_STRICT_MODES
if (required_clients > 2000)
{
# ifndef NO_LOG
logger("Rejecting request with more than 1000 minimum clients (0x8007000D)\n");
# endif
return 0x8007000D;
}
if (CheckClientTime)
{
time_t requestTime = (time_t)fileTimeToUnixTime(&baseRequest->ClientTime);
if (llabs(requestTime - time(NULL)) > 60 * 60 * 4)
{
# ifndef NO_LOG
logger("Client time differs more than 4 hours from system time (0xC004F06C)\n");
# endif // !NO_LOG
return 0xC004F06C;
}
}
if (WhitelistingLevel & 2)
{
if (index >= 0 && (KmsData->KmsItemList[index].IsPreview || KmsData->KmsItemList[index].IsRetail))
{
# ifndef NO_LOG
logger("Refusing retail or beta product (0xC004F042)\n");
# endif // !NO_LOG
return 0xC004F042;
}
}
if ((WhitelistingLevel & 1) && index < 0)
{
# ifndef NO_LOG
logger("Refusing unknown product (0xC004F042)\n");
# endif // !NO_LOG
return 0xC004F042;
}
# ifndef NO_CLIENT_LIST
const int32_t appIndex = index < 0 ? 0 : KmsData->KmsItemList[index].AppIndex;
# endif // NO_CLIENT_LIST
# endif // !NO_STRICT_MODES
const int32_t ePidIndex = index < 0 ? 0 : KmsData->KmsItemList[index].EPidIndex;
# if !defined(NO_STRICT_MODES)
if ((WhitelistingLevel & 1) && index >= 0 && !IsEqualGUID(&KmsData->AppItemList[KmsData->KmsItemList[index].AppIndex].Guid, &baseRequest->AppID))
{
# ifndef NO_LOG
logger("Refusing product with incorrect Application ID (0xC004F042)\n");
# endif // NO_LOG
return 0xC004F042;
}
# ifndef NO_CLIENT_LIST
if (MaintainClients)
{
lock_client_lists();
int_fast16_t i;
int_fast8_t isKnownClient = FALSE;
if (required_clients > (DWORD)ClientLists[appIndex].MaxCount) ClientLists[appIndex].MaxCount = required_clients;
for (i = 0; i < ClientLists[appIndex].MaxCount; i++)
{
if (IsEqualGUID(&ClientLists[appIndex].Guid[i], &baseRequest->CMID))
{
isKnownClient = TRUE;
break;
}
}
if (isKnownClient)
{
baseResponse->Count = LE32(ClientLists[appIndex].CurrentCount);
}
else
{
for (i = 0; i < ClientLists[appIndex].MaxCount; i++)
{
if (IsEqualGUID(ZeroGuid, &ClientLists[appIndex].Guid[i]))
{
if (ClientLists[appIndex].CurrentCount >= MAX_CLIENTS)
{
# ifndef NO_LOG
logger("Rejecting more than 671 clients (0xC004D104)\n");
# endif // !NO_LOG
unlock_client_lists();
return 0xC004D104;
}
baseResponse->Count = LE32(++ClientLists[appIndex].CurrentCount);
memcpy(&ClientLists[appIndex].Guid[i], &baseRequest->CMID, sizeof(GUID));
break;
}
}
if (i >= ClientLists[appIndex].MaxCount)
{
memcpy(&ClientLists[appIndex].Guid[ClientLists[appIndex].CurrentPosition], &baseRequest->CMID, sizeof(GUID));
ClientLists[appIndex].CurrentPosition = (ClientLists[appIndex].CurrentPosition + 1) % (ClientLists[appIndex].MaxCount > MAX_CLIENTS ? MAX_CLIENTS : ClientLists[appIndex].MaxCount);
baseResponse->Count = LE32(ClientLists[appIndex].CurrentCount);
}
}
unlock_client_lists();
}
else
# endif // !NO_CLIENT_LIST
# endif // !defined(NO_STRICT_MODES)
{
const uint8_t minimum_answer_clients = (uint8_t)KmsData->CsvlkData[ePidIndex].MinActiveClients;
baseResponse->Count = LE32(required_clients > minimum_answer_clients ? required_clients : minimum_answer_clients);
//if (LE32(baseRequest->N_Policy) > LE32(baseResponse->Count)) baseResponse->Count = LE32(LE32(baseRequest->N_Policy) << 1);
}
getEpid(baseResponse, &EpidSource, ePidIndex, hwId, ePid);
baseResponse->Version = baseRequest->Version;
memcpy(&baseResponse->CMID, &baseRequest->CMID, sizeof(GUID));
memcpy(&baseResponse->ClientTime, &baseRequest->ClientTime, sizeof(FILETIME));
baseResponse->VLActivationInterval = LE32(VLActivationInterval);
baseResponse->VLRenewalInterval = LE32(VLRenewalInterval);
#ifndef NO_LOG
logResponse(baseResponse, hwId, EpidSource);
#endif // NO_LOG
return S_OK;
}
RequestCallback_t CreateResponseBase = &CreateResponseBaseCallback;
#else // IS_LIBRARY
RequestCallback_t CreateResponseBase = NULL;
#endif // IS_LIBRARY
////TODO: Move to helpers.c
void get16RandomBytes(void* ptr)
{
int i;
for (i = 0; i < 4; i++) ((DWORD*)ptr)[i] = rand32();
}
/*
* Creates v4 response
*/
size_t CreateResponseV4(REQUEST_V4 *const request_v4, BYTE *const responseBuffer, const char* const ipString)
{
RESPONSE_V4* response = (RESPONSE_V4*)responseBuffer;
HRESULT hResult;
if (FAILED(hResult = CreateResponseBase(&request_v4->RequestBase, &response->ResponseBase, NULL, ipString))) return hResult;
const DWORD pidSize = LE32(response->ResponseBase.PIDSize);
BYTE* postEpidPtr = responseBuffer + V4_PRE_EPID_SIZE + pidSize;
memmove(postEpidPtr, &response->ResponseBase.CMID, V4_POST_EPID_SIZE);
const size_t encryptSize = V4_PRE_EPID_SIZE + V4_POST_EPID_SIZE + pidSize;
AesCmacV4(responseBuffer, encryptSize, responseBuffer + encryptSize);
return encryptSize + sizeof(response->MAC);
}
/*
// Workaround for buggy GCC 4.2/4.3
#if defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ < 4)
__attribute__((noinline))
#endif
__pure static uint64_t TimestampInterval(void *ts)
{
return ( GET_UA64LE(ts) / TIME_C1 ) * TIME_C2 + TIME_C3;
}*/
/*
* Creates the HMAC for v6
*/
static int_fast8_t CreateV6Hmac(BYTE *const encrypt_start, const size_t encryptSize, const int_fast8_t tolerance)
{
BYTE hash[32];
const uint8_t halfHashSize = sizeof(hash) >> 1;
BYTE *responseEnd = encrypt_start + encryptSize;
// This is the time from the response
FILETIME* ft = (FILETIME*)(responseEnd - V6_POST_EPID_SIZE + sizeof(((RESPONSE*)0)->CMID));
// Generate a time slot that changes every 4.11 hours.
// Request and response time must match +/- 1 slot.
// When generating a response tolerance must be 0.
// If verifying the hash, try tolerance -1, 0 and +1. One of them must match.
uint64_t timeSlot = LE64((GET_UA64LE(ft) / TIME_C1 * TIME_C2 + TIME_C3) + (tolerance * TIME_C1));
// The time slot is hashed with SHA256 so it is not so obvious that it is time
Sha256((BYTE*)&timeSlot, sizeof(timeSlot), hash);
// The last 16 bytes of the hashed time slot are the actual HMAC key
if (!Sha256Hmac
(
hash + halfHashSize, // Use last 16 bytes of SHA256 as HMAC key
encrypt_start, // hash only the encrypted part of the v6 response
(DWORD)(encryptSize - sizeof(((RESPONSE_V6*)0)->HMAC)), // encryptSize minus the HMAC itself
hash // use same buffer for resulting hash where the key came from
))
{
return FALSE;
}
memcpy(responseEnd - sizeof(((RESPONSE_V6*)0)->HMAC), hash + halfHashSize, halfHashSize);
return TRUE;
}
/*
* Creates v5 or v6 response
*/
size_t CreateResponseV6(REQUEST_V6 *restrict request_v6, BYTE *const responseBuffer, const char* const ipString)
{
// The response will be created in a fixed sized struct to
// avoid unaligned access macros and packed structs on RISC systems
// which largely increase code size.
//
// The fixed sized struct with 64 WCHARs for the ePID will be converted
// to a variable sized struct later and requires unaligned access macros.
RESPONSE_V6* response = (RESPONSE_V6*)responseBuffer;
RESPONSE* baseResponse = &response->ResponseBase;
#ifdef _DEBUG
// ReSharper disable once CppDeclaratorNeverUsed
RESPONSE_V6_DEBUG* xxx_unused = (RESPONSE_V6_DEBUG*)responseBuffer;
#endif
static const BYTE DefaultHwId[8] = { HWID };
const int_fast8_t v6 = LE16(request_v6->MajorVer) > 5;
AesCtx aesCtx;
AesInitKey(&aesCtx, v6 ? AesKeyV6 : AesKeyV5, v6, AES_KEY_BYTES);
AesDecryptCbc(&aesCtx, NULL, request_v6->IV, V6_DECRYPT_SIZE);
// get random salt and SHA256 it
get16RandomBytes(response->RandomXoredIVs);
Sha256(response->RandomXoredIVs, sizeof(response->RandomXoredIVs), response->Hash);
if (v6) // V6 specific stuff
{
// In v6 a random IV is generated
response->Version = request_v6->Version;
get16RandomBytes(response->IV);
// pre-fill with default HwId (not required for v5)
memcpy(response->HwId, DefaultHwId, sizeof(response->HwId));
// Just copy decrypted request IV (using Null IV) here. Note this is identical
// to XORing non-decrypted request and response IVs
memcpy(response->XoredIVs, request_v6->IV, sizeof(response->XoredIVs));
}
else // V5 specific stuff
{
// In v5 IVs of request and response must be identical (MS client checks this)
// The following memcpy copies Version and IVs at once
memcpy(response, request_v6, V6_UNENCRYPTED_SIZE);
}
// Xor Random bytes with decrypted request IV
XorBlock(request_v6->IV, response->RandomXoredIVs);
// Get the base response
HRESULT hResult;
if (FAILED(hResult = CreateResponseBase(&request_v6->RequestBase, baseResponse, response->HwId, ipString))) return hResult;
// Convert the fixed sized struct into variable sized
const DWORD pidSize = LE32(baseResponse->PIDSize);
BYTE* postEpidPtr = responseBuffer + V6_PRE_EPID_SIZE + pidSize;
const size_t post_epid_size = v6 ? V6_POST_EPID_SIZE : V5_POST_EPID_SIZE;
memmove(postEpidPtr, &baseResponse->CMID, post_epid_size);
// number of bytes to encrypt
size_t encryptSize =
V6_PRE_EPID_SIZE
- sizeof(response->Version)
+ pidSize
+ post_epid_size;
//AesDecryptBlock(&aesCtx, Response->IV);
if (v6 && !CreateV6Hmac(response->IV, encryptSize, 0)) return 0;
// Padding auto handled by encryption func
AesEncryptCbc(&aesCtx, NULL, response->IV, &encryptSize);
return encryptSize + sizeof(response->Version);
}
// Create Hashed KMS Client Request Data for KMS Protocol Version 4
BYTE *CreateRequestV4(size_t *size, const REQUEST* requestBase)
{
*size = sizeof(REQUEST_V4);
// Build a proper KMS client request data
BYTE *request = (BYTE *)vlmcsd_malloc(sizeof(REQUEST_V4));
// Temporary Pointer for access to REQUEST_V4 structure
REQUEST_V4 *request_v4 = (REQUEST_V4 *)request;
// Set KMS Client Request Base
memcpy(&request_v4->RequestBase, requestBase, sizeof(REQUEST));
// Generate Hash Signature
AesCmacV4(request, sizeof(REQUEST), request_v4->MAC);
// Return Request Data
return request;
}
// Create Encrypted KMS Client Request Data for KMS Protocol Version 6
BYTE* CreateRequestV6(size_t *size, const REQUEST* requestBase)
{
*size = sizeof(REQUEST_V6);
// Temporary Pointer for access to REQUEST_V5 structure
REQUEST_V6 *request = (REQUEST_V6 *)vlmcsd_malloc(sizeof(REQUEST_V6));
// KMS Protocol Version
request->Version = requestBase->Version;
// Initialize the IV
get16RandomBytes(request->IV);
// Set KMS Client Request Base
memcpy(&request->RequestBase, requestBase, sizeof(REQUEST));
// Encrypt KMS Client Request
size_t encryptSize = sizeof(request->RequestBase);
AesCtx ctx;
const int_fast8_t v6 = LE16(request->MajorVer) > 5;
AesInitKey(&ctx, v6 ? AesKeyV6 : AesKeyV5, v6, 16);
AesEncryptCbc(&ctx, request->IV, (BYTE*)(&request->RequestBase), &encryptSize);
// Return Proper Request Data
return (BYTE*)request;
}
/*
* Checks whether Length of ePID is valid
*/
static uint8_t checkPidLength(const RESPONSE *const responseBase)
{
unsigned int i;
if (LE32(responseBase->PIDSize) > (PID_BUFFER_SIZE << 1)) return FALSE;
if (responseBase->KmsPID[(LE32(responseBase->PIDSize) >> 1) - 1]) return FALSE;
for (i = 0; i < (LE32(responseBase->PIDSize) >> 1) - 2; i++)
{
if (!responseBase->KmsPID[i]) return FALSE;
}
return TRUE;
}
/*
* "Decrypts" a KMS v4 response. Actually just copies to a fixed size buffer
*/
RESPONSE_RESULT DecryptResponseV4(RESPONSE_V4* response_v4, const int responseSize, BYTE* const rawResponse, const BYTE* const rawRequest)
{
const int copySize =
V4_PRE_EPID_SIZE +
(LE32(((RESPONSE_V4*)rawResponse)->ResponseBase.PIDSize) <= PID_BUFFER_SIZE << 1 ?
LE32(((RESPONSE_V4*)rawResponse)->ResponseBase.PIDSize) :
PID_BUFFER_SIZE << 1);
const int messageSize = copySize + V4_POST_EPID_SIZE;
memcpy(response_v4, rawResponse, copySize);
memcpy(&response_v4->ResponseBase.CMID, rawResponse + copySize, responseSize - copySize);
// ensure PID is null terminated
response_v4->ResponseBase.KmsPID[PID_BUFFER_SIZE - 1] = 0;
uint8_t* mac = rawResponse + messageSize;
AesCmacV4(rawResponse, messageSize, mac);
REQUEST_V4* request_v4 = (REQUEST_V4*)rawRequest;
RESPONSE_RESULT result;
result.mask = (DWORD)~0;
result.PidLengthOK = checkPidLength((RESPONSE*)rawResponse);
result.VersionOK = response_v4->ResponseBase.Version == request_v4->RequestBase.Version;
result.HashOK = !memcmp(&response_v4->MAC, mac, sizeof(response_v4->MAC));
result.TimeStampOK = !memcmp(&response_v4->ResponseBase.ClientTime, &request_v4->RequestBase.ClientTime, sizeof(FILETIME));
result.ClientMachineIDOK = !memcmp(&response_v4->ResponseBase.CMID, &request_v4->RequestBase.CMID, sizeof(GUID));
result.effectiveResponseSize = responseSize;
result.correctResponseSize = sizeof(RESPONSE_V4) - sizeof(response_v4->ResponseBase.KmsPID) + LE32(response_v4->ResponseBase.PIDSize);
return result;
}
static RESPONSE_RESULT VerifyResponseV6(RESPONSE_RESULT result, RESPONSE_V6* response_v6, REQUEST_V6* request_v6, BYTE* const rawResponse)
{
// Check IVs
result.IVsOK = !memcmp // In V6 the XoredIV is actually the request IV
(
response_v6->XoredIVs,
request_v6->IV,
sizeof(response_v6->XoredIVs)
);
result.IVnotSuspicious = !!memcmp // If IVs are identical, it is obviously an emulator
(
request_v6->IV,
response_v6->IV,
sizeof(request_v6->IV)
);
// Check Hmac
int_fast8_t tolerance;
BYTE OldHmac[sizeof(response_v6->HMAC)];
result.HmacSha256OK = FALSE;
memcpy // Save received HMAC to compare with calculated HMAC later
(
OldHmac,
response_v6->HMAC,
sizeof(response_v6->HMAC)
);
//AesEncryptBlock(Ctx, Response_v6->IV); // CreateV6Hmac needs original IV as received over the network
for (tolerance = -1; tolerance < 2; tolerance++)
{
CreateV6Hmac
(
rawResponse + sizeof(response_v6->Version), // Pointer to start of the encrypted part of the response
(size_t)result.correctResponseSize - sizeof(response_v6->Version), // size of the encrypted part
tolerance // tolerance -1, 0, or +1
);
result.HmacSha256OK = !memcmp // Compare both HMACs
(
OldHmac,
rawResponse + (size_t)result.correctResponseSize - sizeof(response_v6->HMAC),
sizeof(OldHmac)
);
if (result.HmacSha256OK) break;
}
return result;
}
static RESPONSE_RESULT VerifyResponseV5(RESPONSE_RESULT result, REQUEST_V5* request_v5, RESPONSE_V5* response_v5)
{
// Check IVs: in V5 (and only v5) request and response IVs must match
result.IVsOK = !memcmp(request_v5->IV, response_v5->IV, sizeof(request_v5->IV));
// V5 has no Hmac, always set to TRUE
result.HmacSha256OK = TRUE;
return result;
}
/*
* Decrypts a KMS v5 or v6 response received from a server.
* hwid must supply a valid 16 byte buffer for v6. hwid is ignored in v5
*/
RESPONSE_RESULT DecryptResponseV6(RESPONSE_V6* response_v6, int responseSize, BYTE* const response, const BYTE* const rawRequest, BYTE* hwid)
{
RESPONSE_RESULT result;
result.mask = (DWORD)~0; // Set all bits in the results mask to 1. Assume success first.
result.effectiveResponseSize = responseSize;
int copySize1 =
sizeof(response_v6->Version);
// Decrypt KMS Server Response (encrypted part starts after RequestIV)
responseSize -= copySize1;
AesCtx ctx;
const int_fast8_t v6 = LE16(((RESPONSE_V6*)response)->MajorVer) > 5;
AesInitKey(&ctx, v6 ? AesKeyV6 : AesKeyV5, v6, AES_KEY_BYTES);
AesDecryptCbc(&ctx, NULL, response + copySize1, responseSize);
// Check padding
BYTE* lastPadByte = response + (size_t)result.effectiveResponseSize - 1;
// Must be from 1 to 16
if (!*lastPadByte || *lastPadByte > AES_BLOCK_BYTES)
{
result.DecryptSuccess = FALSE;
return result;
}
// Check if pad bytes are all the same
BYTE* padByte;
for (padByte = lastPadByte - *lastPadByte + 1; padByte < lastPadByte; padByte++)
{
if (*padByte != *lastPadByte)
{
result.DecryptSuccess = FALSE;
return result;
}
}
// Add size of Version, KmsPIDLen and variable size PID
const DWORD pidSize = LE32(((RESPONSE_V6*)response)->ResponseBase.PIDSize);
copySize1 +=
V6_UNENCRYPTED_SIZE +
sizeof(response_v6->ResponseBase.PIDSize) +
(pidSize <= PID_BUFFER_SIZE << 1 ? pidSize : PID_BUFFER_SIZE << 1);
// Copy part 1 of response up to variable sized PID
memcpy(response_v6, response, copySize1);
// ensure PID is null terminated
response_v6->ResponseBase.KmsPID[PID_BUFFER_SIZE - 1] = 0;
// Copy part 2
const size_t copySize2 = v6 ? V6_POST_EPID_SIZE : V5_POST_EPID_SIZE;
memcpy(&response_v6->ResponseBase.CMID, response + copySize1, copySize2);
// Decrypting the response is finished here. Now we check the results for validity
// A basic client doesn't need the stuff below this comment but we want to use vlmcs
// as a debug tool for KMS emulators.
REQUEST_V6* request_v6 = (REQUEST_V6*)rawRequest;
const DWORD decryptSize = sizeof(request_v6->IV) + sizeof(request_v6->RequestBase) + sizeof(request_v6->Pad);
AesDecryptCbc(&ctx, NULL, request_v6->IV, decryptSize);
// Check that all version information is the same
result.VersionOK =
request_v6->Version == response_v6->ResponseBase.Version &&
request_v6->Version == response_v6->Version &&
request_v6->Version == request_v6->RequestBase.Version;
// Check Base Request
result.PidLengthOK = checkPidLength(&((RESPONSE_V6*)response)->ResponseBase);
result.TimeStampOK = !memcmp(&response_v6->ResponseBase.ClientTime, &request_v6->RequestBase.ClientTime, sizeof(FILETIME));
result.ClientMachineIDOK = IsEqualGUID(&response_v6->ResponseBase.CMID, &request_v6->RequestBase.CMID);
// Rebuild Random Key and Sha256 Hash
BYTE hashVerify[sizeof(response_v6->Hash)];
BYTE randomKey[sizeof(response_v6->RandomXoredIVs)];
memcpy(randomKey, request_v6->IV, sizeof(randomKey));
XorBlock(response_v6->RandomXoredIVs, randomKey);
Sha256(randomKey, sizeof(randomKey), hashVerify);
result.HashOK = !memcmp(response_v6->Hash, hashVerify, sizeof(hashVerify));
// size before encryption (padding not included)
result.correctResponseSize =
(v6 ? sizeof(RESPONSE_V6) : sizeof(RESPONSE_V5))
- sizeof(response_v6->ResponseBase.KmsPID)
+ LE32(response_v6->ResponseBase.PIDSize);
// Version specific stuff
if (v6)
{
// Copy the HwId
memcpy(hwid, response_v6->HwId, sizeof(response_v6->HwId));
// Verify the V6 specific part of the response
result = VerifyResponseV6(result, response_v6, request_v6, response);
}
else // V5
{
// Verify the V5 specific part of the response
result = VerifyResponseV5(result, request_v6, (RESPONSE_V5*)response_v6);
}
// padded size after encryption
result.correctResponseSize += (~(result.correctResponseSize - sizeof(response_v6->ResponseBase.Version)) & 0xf) + 1;
return result;
}