#ifndef USE_EXTERNAL_ZSTD /* * Copyright (c) Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* ====== Compiler specifics ====== */ #if defined(_MSC_VER) # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif /* ====== Constants ====== */ #define ZSTDMT_OVERLAPLOG_DEFAULT 0 /* ====== Dependencies ====== */ #include "zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ #include "mem.h" /* MEM_STATIC */ #include "pool.h" /* threadpool */ #include "threading.h" /* mutex */ #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ #include "zstd_ldm.h" #include "zstdmt_compress.h" /* Guards code to support resizing the SeqPool. * We will want to resize the SeqPool to save memory in the future. * Until then, comment the code out since it is unused. */ #define ZSTD_RESIZE_SEQPOOL 0 /* ====== Debug ====== */ #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ && !defined(_MSC_VER) \ && !defined(__MINGW32__) # include # include # include # define DEBUG_PRINTHEX(l,p,n) { \ unsigned debug_u; \ for (debug_u=0; debug_u<(n); debug_u++) \ RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ RAWLOG(l, " \n"); \ } static unsigned long long GetCurrentClockTimeMicroseconds(void) { static clock_t _ticksPerSecond = 0; if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); { struct tms junk; clock_t newTicks = (clock_t) times(&junk); return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); } } #define MUTEX_WAIT_TIME_DLEVEL 6 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ ZSTD_pthread_mutex_lock(mutex); \ { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ unsigned long long const elapsedTime = (afterTime-beforeTime); \ if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ elapsedTime, #mutex); \ } } \ } else { \ ZSTD_pthread_mutex_lock(mutex); \ } \ } #else # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) # define DEBUG_PRINTHEX(l,p,n) {} #endif /* ===== Buffer Pool ===== */ /* a single Buffer Pool can be invoked from multiple threads in parallel */ typedef struct buffer_s { void* start; size_t capacity; } buffer_t; static const buffer_t g_nullBuffer = { NULL, 0 }; typedef struct ZSTDMT_bufferPool_s { ZSTD_pthread_mutex_t poolMutex; size_t bufferSize; unsigned totalBuffers; unsigned nbBuffers; ZSTD_customMem cMem; buffer_t bTable[1]; /* variable size */ } ZSTDMT_bufferPool; static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem) { ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc( sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); if (bufPool==NULL) return NULL; if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { ZSTD_customFree(bufPool, cMem); return NULL; } bufPool->bufferSize = 64 KB; bufPool->totalBuffers = maxNbBuffers; bufPool->nbBuffers = 0; bufPool->cMem = cMem; return bufPool; } static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) { unsigned u; DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); if (!bufPool) return; /* compatibility with free on NULL */ for (u=0; utotalBuffers; u++) { DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem); } ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); ZSTD_customFree(bufPool, bufPool->cMem); } /* only works at initialization, not during compression */ static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) { size_t const poolSize = sizeof(*bufPool) + (bufPool->totalBuffers - 1) * sizeof(buffer_t); unsigned u; size_t totalBufferSize = 0; ZSTD_pthread_mutex_lock(&bufPool->poolMutex); for (u=0; utotalBuffers; u++) totalBufferSize += bufPool->bTable[u].capacity; ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return poolSize + totalBufferSize; } /* ZSTDMT_setBufferSize() : * all future buffers provided by this buffer pool will have _at least_ this size * note : it's better for all buffers to have same size, * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) { ZSTD_pthread_mutex_lock(&bufPool->poolMutex); DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); bufPool->bufferSize = bSize; ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); } static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers) { if (srcBufPool==NULL) return NULL; if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ return srcBufPool; /* need a larger buffer pool */ { ZSTD_customMem const cMem = srcBufPool->cMem; size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ ZSTDMT_bufferPool* newBufPool; ZSTDMT_freeBufferPool(srcBufPool); newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem); if (newBufPool==NULL) return newBufPool; ZSTDMT_setBufferSize(newBufPool, bSize); return newBufPool; } } /** ZSTDMT_getBuffer() : * assumption : bufPool must be valid * @return : a buffer, with start pointer and size * note: allocation may fail, in this case, start==NULL and size==0 */ static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) { size_t const bSize = bufPool->bufferSize; DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); ZSTD_pthread_mutex_lock(&bufPool->poolMutex); if (bufPool->nbBuffers) { /* try to use an existing buffer */ buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; size_t const availBufferSize = buf.capacity; bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { /* large enough, but not too much */ DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", bufPool->nbBuffers, (U32)buf.capacity); ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return buf; } /* size conditions not respected : scratch this buffer, create new one */ DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); ZSTD_customFree(buf.start, bufPool->cMem); } ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); /* create new buffer */ DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); { buffer_t buffer; void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); buffer.start = start; /* note : start can be NULL if malloc fails ! */ buffer.capacity = (start==NULL) ? 0 : bSize; if (start==NULL) { DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); } else { DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); } return buffer; } } #if ZSTD_RESIZE_SEQPOOL /** ZSTDMT_resizeBuffer() : * assumption : bufPool must be valid * @return : a buffer that is at least the buffer pool buffer size. * If a reallocation happens, the data in the input buffer is copied. */ static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) { size_t const bSize = bufPool->bufferSize; if (buffer.capacity < bSize) { void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); buffer_t newBuffer; newBuffer.start = start; newBuffer.capacity = start == NULL ? 0 : bSize; if (start != NULL) { assert(newBuffer.capacity >= buffer.capacity); ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); return newBuffer; } DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); } return buffer; } #endif /* store buffer for later re-use, up to pool capacity */ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) { DEBUGLOG(5, "ZSTDMT_releaseBuffer"); if (buf.start == NULL) return; /* compatible with release on NULL */ ZSTD_pthread_mutex_lock(&bufPool->poolMutex); if (bufPool->nbBuffers < bufPool->totalBuffers) { bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return; } ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); /* Reached bufferPool capacity (should not happen) */ DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); ZSTD_customFree(buf.start, bufPool->cMem); } /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released. * The 3 additional buffers are as follows: * 1 buffer for input loading * 1 buffer for "next input" when submitting current one * 1 buffer stuck in queue */ #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3 /* After a worker releases its rawSeqStore, it is immediately ready for reuse. * So we only need one seq buffer per worker. */ #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers /* ===== Seq Pool Wrapper ====== */ typedef ZSTDMT_bufferPool ZSTDMT_seqPool; static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) { return ZSTDMT_sizeof_bufferPool(seqPool); } static rawSeqStore_t bufferToSeq(buffer_t buffer) { rawSeqStore_t seq = kNullRawSeqStore; seq.seq = (rawSeq*)buffer.start; seq.capacity = buffer.capacity / sizeof(rawSeq); return seq; } static buffer_t seqToBuffer(rawSeqStore_t seq) { buffer_t buffer; buffer.start = seq.seq; buffer.capacity = seq.capacity * sizeof(rawSeq); return buffer; } static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) { if (seqPool->bufferSize == 0) { return kNullRawSeqStore; } return bufferToSeq(ZSTDMT_getBuffer(seqPool)); } #if ZSTD_RESIZE_SEQPOOL static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) { return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); } #endif static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) { ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); } static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) { ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); } static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) { ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); if (seqPool == NULL) return NULL; ZSTDMT_setNbSeq(seqPool, 0); return seqPool; } static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) { ZSTDMT_freeBufferPool(seqPool); } static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) { return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers)); } /* ===== CCtx Pool ===== */ /* a single CCtx Pool can be invoked from multiple threads in parallel */ typedef struct { ZSTD_pthread_mutex_t poolMutex; int totalCCtx; int availCCtx; ZSTD_customMem cMem; ZSTD_CCtx* cctx[1]; /* variable size */ } ZSTDMT_CCtxPool; /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) { int cid; for (cid=0; cidtotalCCtx; cid++) ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ ZSTD_pthread_mutex_destroy(&pool->poolMutex); ZSTD_customFree(pool, pool->cMem); } /* ZSTDMT_createCCtxPool() : * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, ZSTD_customMem cMem) { ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc( sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); assert(nbWorkers > 0); if (!cctxPool) return NULL; if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { ZSTD_customFree(cctxPool, cMem); return NULL; } cctxPool->cMem = cMem; cctxPool->totalCCtx = nbWorkers; cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); return cctxPool; } static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, int nbWorkers) { if (srcPool==NULL) return NULL; if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ /* need a larger cctx pool */ { ZSTD_customMem const cMem = srcPool->cMem; ZSTDMT_freeCCtxPool(srcPool); return ZSTDMT_createCCtxPool(nbWorkers, cMem); } } /* only works during initialization phase, not during compression */ static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) { ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); { unsigned const nbWorkers = cctxPool->totalCCtx; size_t const poolSize = sizeof(*cctxPool) + (nbWorkers-1) * sizeof(ZSTD_CCtx*); unsigned u; size_t totalCCtxSize = 0; for (u=0; ucctx[u]); } ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); assert(nbWorkers > 0); return poolSize + totalCCtxSize; } } static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) { DEBUGLOG(5, "ZSTDMT_getCCtx"); ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); if (cctxPool->availCCtx) { cctxPool->availCCtx--; { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); return cctx; } } ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); DEBUGLOG(5, "create one more CCtx"); return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ } static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) { if (cctx==NULL) return; /* compatibility with release on NULL */ ZSTD_pthread_mutex_lock(&pool->poolMutex); if (pool->availCCtx < pool->totalCCtx) pool->cctx[pool->availCCtx++] = cctx; else { /* pool overflow : should not happen, since totalCCtx==nbWorkers */ DEBUGLOG(4, "CCtx pool overflow : free cctx"); ZSTD_freeCCtx(cctx); } ZSTD_pthread_mutex_unlock(&pool->poolMutex); } /* ==== Serial State ==== */ typedef struct { void const* start; size_t size; } range_t; typedef struct { /* All variables in the struct are protected by mutex. */ ZSTD_pthread_mutex_t mutex; ZSTD_pthread_cond_t cond; ZSTD_CCtx_params params; ldmState_t ldmState; XXH64_state_t xxhState; unsigned nextJobID; /* Protects ldmWindow. * Must be acquired after the main mutex when acquiring both. */ ZSTD_pthread_mutex_t ldmWindowMutex; ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ } serialState_t; static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize, const void* dict, size_t const dictSize, ZSTD_dictContentType_e dictContentType) { /* Adjust parameters */ if (params.ldmParams.enableLdm == ZSTD_ps_enable) { DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); assert(params.ldmParams.hashRateLog < 32); } else { ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); } serialState->nextJobID = 0; if (params.fParams.checksumFlag) XXH64_reset(&serialState->xxhState, 0); if (params.ldmParams.enableLdm == ZSTD_ps_enable) { ZSTD_customMem cMem = params.customMem; unsigned const hashLog = params.ldmParams.hashLog; size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); unsigned const bucketLog = params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; unsigned const prevBucketLog = serialState->params.ldmParams.hashLog - serialState->params.ldmParams.bucketSizeLog; size_t const numBuckets = (size_t)1 << bucketLog; /* Size the seq pool tables */ ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); /* Reset the window */ ZSTD_window_init(&serialState->ldmState.window); /* Resize tables and output space if necessary. */ if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { ZSTD_customFree(serialState->ldmState.hashTable, cMem); serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); } if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem); } if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) return 1; /* Zero the tables */ ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets); /* Update window state and fill hash table with dict */ serialState->ldmState.loadedDictEnd = 0; if (dictSize > 0) { if (dictContentType == ZSTD_dct_rawContent) { BYTE const* const dictEnd = (const BYTE*)dict + dictSize; ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0); ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); } else { /* don't even load anything */ } } /* Initialize serialState's copy of ldmWindow. */ serialState->ldmWindow = serialState->ldmState.window; } serialState->params = params; serialState->params.jobSize = (U32)jobSize; return 0; } static int ZSTDMT_serialState_init(serialState_t* serialState) { int initError = 0; ZSTD_memset(serialState, 0, sizeof(*serialState)); initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); return initError; } static void ZSTDMT_serialState_free(serialState_t* serialState) { ZSTD_customMem cMem = serialState->params.customMem; ZSTD_pthread_mutex_destroy(&serialState->mutex); ZSTD_pthread_cond_destroy(&serialState->cond); ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); ZSTD_customFree(serialState->ldmState.hashTable, cMem); ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); } static void ZSTDMT_serialState_update(serialState_t* serialState, ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, range_t src, unsigned jobID) { /* Wait for our turn */ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); while (serialState->nextJobID < jobID) { DEBUGLOG(5, "wait for serialState->cond"); ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); } /* A future job may error and skip our job */ if (serialState->nextJobID == jobID) { /* It is now our turn, do any processing necessary */ if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) { size_t error; assert(seqStore.seq != NULL && seqStore.pos == 0 && seqStore.size == 0 && seqStore.capacity > 0); assert(src.size <= serialState->params.jobSize); ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0); error = ZSTD_ldm_generateSequences( &serialState->ldmState, &seqStore, &serialState->params.ldmParams, src.start, src.size); /* We provide a large enough buffer to never fail. */ assert(!ZSTD_isError(error)); (void)error; /* Update ldmWindow to match the ldmState.window and signal the main * thread if it is waiting for a buffer. */ ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); serialState->ldmWindow = serialState->ldmState.window; ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); } if (serialState->params.fParams.checksumFlag && src.size > 0) XXH64_update(&serialState->xxhState, src.start, src.size); } /* Now it is the next jobs turn */ serialState->nextJobID++; ZSTD_pthread_cond_broadcast(&serialState->cond); ZSTD_pthread_mutex_unlock(&serialState->mutex); if (seqStore.size > 0) { size_t const err = ZSTD_referenceExternalSequences( jobCCtx, seqStore.seq, seqStore.size); assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); assert(!ZSTD_isError(err)); (void)err; } } static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, unsigned jobID, size_t cSize) { ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); if (serialState->nextJobID <= jobID) { assert(ZSTD_isError(cSize)); (void)cSize; DEBUGLOG(5, "Skipping past job %u because of error", jobID); serialState->nextJobID = jobID + 1; ZSTD_pthread_cond_broadcast(&serialState->cond); ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); ZSTD_window_clear(&serialState->ldmWindow); ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); } ZSTD_pthread_mutex_unlock(&serialState->mutex); } /* ------------------------------------------ */ /* ===== Worker thread ===== */ /* ------------------------------------------ */ static const range_t kNullRange = { NULL, 0 }; typedef struct { size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ unsigned jobID; /* set by mtctx, then read by worker => no barrier */ unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ size_t dstFlushed; /* used only by mtctx */ unsigned frameChecksumNeeded; /* used only by mtctx */ } ZSTDMT_jobDescription; #define JOB_ERROR(e) { \ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ job->cSize = e; \ ZSTD_pthread_mutex_unlock(&job->job_mutex); \ goto _endJob; \ } /* ZSTDMT_compressionJob() is a POOL_function type */ static void ZSTDMT_compressionJob(void* jobDescription) { ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); buffer_t dstBuff = job->dstBuff; size_t lastCBlockSize = 0; /* resources */ if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ dstBuff = ZSTDMT_getBuffer(job->bufPool); if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ } if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL) JOB_ERROR(ERROR(memory_allocation)); /* Don't compute the checksum for chunks, since we compute it externally, * but write it in the header. */ if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; /* Don't run LDM for the chunks, since we handle it externally */ jobParams.ldmParams.enableLdm = ZSTD_ps_disable; /* Correct nbWorkers to 0. */ jobParams.nbWorkers = 0; /* init */ if (job->cdict) { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); assert(job->firstJob); /* only allowed for first job */ if (ZSTD_isError(initError)) JOB_ERROR(initError); } else { /* srcStart points at reloaded section */ U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); } if (!job->firstJob) { size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0); if (ZSTD_isError(err)) JOB_ERROR(err); } { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ ZSTD_dtlm_fast, NULL, /*cdict*/ &jobParams, pledgedSrcSize); if (ZSTD_isError(initError)) JOB_ERROR(initError); } } /* Perform serial step as early as possible, but after CCtx initialization */ ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); if (ZSTD_isError(hSize)) JOB_ERROR(hSize); DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); ZSTD_invalidateRepCodes(cctx); } /* compress */ { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); const BYTE* ip = (const BYTE*) job->src.start; BYTE* const ostart = (BYTE*)dstBuff.start; BYTE* op = ostart; BYTE* oend = op + dstBuff.capacity; int chunkNb; if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); assert(job->cSize == 0); for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); if (ZSTD_isError(cSize)) JOB_ERROR(cSize); ip += chunkSize; op += cSize; assert(op < oend); /* stats */ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); job->cSize += cSize; job->consumed = chunkSize * chunkNb; DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", (U32)cSize, (U32)job->cSize); ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ ZSTD_pthread_mutex_unlock(&job->job_mutex); } /* last block */ assert(chunkSize > 0); assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { size_t const lastBlockSize1 = job->src.size & (chunkSize-1); size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; size_t const cSize = (job->lastJob) ? ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); if (ZSTD_isError(cSize)) JOB_ERROR(cSize); lastCBlockSize = cSize; } } if (!job->firstJob) { /* Double check that we don't have an ext-dict, because then our * repcode invalidation doesn't work. */ assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); } ZSTD_CCtx_trace(cctx, 0); _endJob: ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); if (job->prefix.size > 0) DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); /* release resources */ ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); ZSTDMT_releaseCCtx(job->cctxPool, cctx); /* report */ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); job->cSize += lastCBlockSize; job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ ZSTD_pthread_cond_signal(&job->job_cond); ZSTD_pthread_mutex_unlock(&job->job_mutex); } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ typedef struct { range_t prefix; /* read-only non-owned prefix buffer */ buffer_t buffer; size_t filled; } inBuff_t; typedef struct { BYTE* buffer; /* The round input buffer. All jobs get references * to pieces of the buffer. ZSTDMT_tryGetInputRange() * handles handing out job input buffers, and makes * sure it doesn't overlap with any pieces still in use. */ size_t capacity; /* The capacity of buffer. */ size_t pos; /* The position of the current inBuff in the round * buffer. Updated past the end if the inBuff once * the inBuff is sent to the worker thread. * pos <= capacity. */ } roundBuff_t; static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; #define RSYNC_LENGTH 32 /* Don't create chunks smaller than the zstd block size. * This stops us from regressing compression ratio too much, * and ensures our output fits in ZSTD_compressBound(). * * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then * ZSTD_COMPRESSBOUND() will need to be updated. */ #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX #define RSYNC_MIN_BLOCK_SIZE (1< one job is already prepared, but pool has shortage of workers. Don't create a new job. */ inBuff_t inBuff; roundBuff_t roundBuff; serialState_t serial; rsyncState_t rsync; unsigned jobIDMask; unsigned doneJobID; unsigned nextJobID; unsigned frameEnded; unsigned allJobsCompleted; unsigned long long frameContentSize; unsigned long long consumed; unsigned long long produced; ZSTD_customMem cMem; ZSTD_CDict* cdictLocal; const ZSTD_CDict* cdict; unsigned providedFactory: 1; }; static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) { U32 jobNb; if (jobTable == NULL) return; for (jobNb=0; jobNb mtctx->jobIDMask+1) { /* need more job capacity */ ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); mtctx->jobIDMask = 0; mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); if (mtctx->jobs==NULL) return ERROR(memory_allocation); assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ mtctx->jobIDMask = nbJobs - 1; } return 0; } /* ZSTDMT_CCtxParam_setNbWorkers(): * Internal use only */ static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) { return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); } MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) { ZSTDMT_CCtx* mtctx; U32 nbJobs = nbWorkers + 2; int initError; DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); if (nbWorkers < 1) return NULL; nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) /* invalid custom allocator */ return NULL; mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); if (!mtctx) return NULL; ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); mtctx->cMem = cMem; mtctx->allJobsCompleted = 1; if (pool != NULL) { mtctx->factory = pool; mtctx->providedFactory = 1; } else { mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); mtctx->providedFactory = 0; } mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ mtctx->jobIDMask = nbJobs - 1; mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); initError = ZSTDMT_serialState_init(&mtctx->serial); mtctx->roundBuff = kNullRoundBuff; if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { ZSTDMT_freeCCtx(mtctx); return NULL; } DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); return mtctx; } ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) { #ifdef ZSTD_MULTITHREAD return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); #else (void)nbWorkers; (void)cMem; (void)pool; return NULL; #endif } /* ZSTDMT_releaseAllJobResources() : * note : ensure all workers are killed first ! */ static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) { unsigned jobID; DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { /* Copy the mutex/cond out */ ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); /* Clear the job description, but keep the mutex/cond */ ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); mtctx->jobs[jobID].job_mutex = mutex; mtctx->jobs[jobID].job_cond = cond; } mtctx->inBuff.buffer = g_nullBuffer; mtctx->inBuff.filled = 0; mtctx->allJobsCompleted = 1; } static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) { DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); while (mtctx->doneJobID < mtctx->nextJobID) { unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); } ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); mtctx->doneJobID++; } } size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) { if (mtctx==NULL) return 0; /* compatible with free on NULL */ if (!mtctx->providedFactory) POOL_free(mtctx->factory); /* stop and free worker threads */ ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); ZSTDMT_freeBufferPool(mtctx->bufPool); ZSTDMT_freeCCtxPool(mtctx->cctxPool); ZSTDMT_freeSeqPool(mtctx->seqPool); ZSTDMT_serialState_free(&mtctx->serial); ZSTD_freeCDict(mtctx->cdictLocal); if (mtctx->roundBuff.buffer) ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); ZSTD_customFree(mtctx, mtctx->cMem); return 0; } size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) { if (mtctx == NULL) return 0; /* supports sizeof NULL */ return sizeof(*mtctx) + POOL_sizeof(mtctx->factory) + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) + ZSTDMT_sizeof_seqPool(mtctx->seqPool) + ZSTD_sizeof_CDict(mtctx->cdictLocal) + mtctx->roundBuff.capacity; } /* ZSTDMT_resize() : * @return : error code if fails, 0 on success */ static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) { if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers)); if (mtctx->bufPool == NULL) return ERROR(memory_allocation); mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); if (mtctx->seqPool == NULL) return ERROR(memory_allocation); ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); return 0; } /*! ZSTDMT_updateCParams_whileCompressing() : * Updates a selected set of compression parameters, remaining compatible with currently active frame. * New parameters will be applied to next compression job. */ void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) { U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ int const compressionLevel = cctxParams->compressionLevel; DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", compressionLevel); mtctx->params.compressionLevel = compressionLevel; { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); cParams.windowLog = saved_wlog; mtctx->params.cParams = cParams; } } /* ZSTDMT_getFrameProgression(): * tells how much data has been consumed (input) and produced (output) for current frame. * able to count progression inside worker threads. * Note : mutex will be acquired during statistics collection inside workers. */ ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) { ZSTD_frameProgression fps; DEBUGLOG(5, "ZSTDMT_getFrameProgression"); fps.ingested = mtctx->consumed + mtctx->inBuff.filled; fps.consumed = mtctx->consumed; fps.produced = fps.flushed = mtctx->produced; fps.currentJobID = mtctx->nextJobID; fps.nbActiveWorkers = 0; { unsigned jobNb; unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", mtctx->doneJobID, lastJobNb, mtctx->jobReady) for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { unsigned const wJobID = jobNb & mtctx->jobIDMask; ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); { size_t const cResult = jobPtr->cSize; size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; assert(flushed <= produced); fps.ingested += jobPtr->src.size; fps.consumed += jobPtr->consumed; fps.produced += produced; fps.flushed += flushed; fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); } ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); } } return fps; } size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) { size_t toFlush; unsigned const jobID = mtctx->doneJobID; assert(jobID <= mtctx->nextJobID); if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ /* look into oldest non-fully-flushed job */ { unsigned const wJobID = jobID & mtctx->jobIDMask; ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); { size_t const cResult = jobPtr->cSize; size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; assert(flushed <= produced); assert(jobPtr->consumed <= jobPtr->src.size); toFlush = produced - flushed; /* if toFlush==0, nothing is available to flush. * However, jobID is expected to still be active: * if jobID was already completed and fully flushed, * ZSTDMT_flushProduced() should have already moved onto next job. * Therefore, some input has not yet been consumed. */ if (toFlush==0) { assert(jobPtr->consumed < jobPtr->src.size); } } ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); } return toFlush; } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) { unsigned jobLog; if (params->ldmParams.enableLdm == ZSTD_ps_enable) { /* In Long Range Mode, the windowLog is typically oversized. * In which case, it's preferable to determine the jobSize * based on cycleLog instead. */ jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); } else { jobLog = MAX(20, params->cParams.windowLog + 2); } return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); } static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) { switch(strat) { case ZSTD_btultra2: return 9; case ZSTD_btultra: case ZSTD_btopt: return 8; case ZSTD_btlazy2: case ZSTD_lazy2: return 7; case ZSTD_lazy: case ZSTD_greedy: case ZSTD_dfast: case ZSTD_fast: default:; } return 6; } static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) { assert(0 <= ovlog && ovlog <= 9); if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); return ovlog; } static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) { int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); assert(0 <= overlapRLog && overlapRLog <= 8); if (params->ldmParams.enableLdm == ZSTD_ps_enable) { /* In Long Range Mode, the windowLog is typically oversized. * In which case, it's preferable to determine the jobSize * based on chainLog instead. * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) - overlapRLog; } assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); DEBUGLOG(4, "overlapLog : %i", params->overlapLog); DEBUGLOG(4, "overlap size : %i", 1 << ovLog); return (ovLog==0) ? 0 : (size_t)1 << ovLog; } /* ====================================== */ /* ======= Streaming API ======= */ /* ====================================== */ size_t ZSTDMT_initCStream_internal( ZSTDMT_CCtx* mtctx, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); /* params supposed partially fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ /* init */ if (params.nbWorkers != mtctx->params.nbWorkers) FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ ZSTDMT_waitForAllJobsCompleted(mtctx); ZSTDMT_releaseAllJobResources(mtctx); mtctx->allJobsCompleted = 1; } mtctx->params = params; mtctx->frameContentSize = pledgedSrcSize; if (dict) { ZSTD_freeCDict(mtctx->cdictLocal); mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ params.cParams, mtctx->cMem); mtctx->cdict = mtctx->cdictLocal; if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); } else { ZSTD_freeCDict(mtctx->cdictLocal); mtctx->cdictLocal = NULL; mtctx->cdict = cdict; } mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); mtctx->targetSectionSize = params.jobSize; if (mtctx->targetSectionSize == 0) { mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); } assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); if (params.rsyncable) { /* Aim for the targetsectionSize as the average job size. */ U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our * expected job size is at least 4x larger. */ assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2); DEBUGLOG(4, "rsyncLog = %u", rsyncBits); mtctx->rsync.hash = 0; mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); } if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); { /* If ldm is enabled we need windowSize space. */ size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0; /* Two buffers of slack, plus extra space for the overlap * This is the minimum slack that LDM works with. One extra because * flush might waste up to targetSectionSize-1 bytes. Another extra * for the overlap (if > 0), then one to fill which doesn't overlap * with the LDM window. */ size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; /* Compute the total size, and always have enough slack */ size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; if (mtctx->roundBuff.capacity < capacity) { if (mtctx->roundBuff.buffer) ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); if (mtctx->roundBuff.buffer == NULL) { mtctx->roundBuff.capacity = 0; return ERROR(memory_allocation); } mtctx->roundBuff.capacity = capacity; } } DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); mtctx->roundBuff.pos = 0; mtctx->inBuff.buffer = g_nullBuffer; mtctx->inBuff.filled = 0; mtctx->inBuff.prefix = kNullRange; mtctx->doneJobID = 0; mtctx->nextJobID = 0; mtctx->frameEnded = 0; mtctx->allJobsCompleted = 0; mtctx->consumed = 0; mtctx->produced = 0; if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, dict, dictSize, dictContentType)) return ERROR(memory_allocation); return 0; } /* ZSTDMT_writeLastEmptyBlock() * Write a single empty block with an end-of-frame to finish a frame. * Job must be created from streaming variant. * This function is always successful if expected conditions are fulfilled. */ static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) { assert(job->lastJob == 1); assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ job->dstBuff = ZSTDMT_getBuffer(job->bufPool); if (job->dstBuff.start == NULL) { job->cSize = ERROR(memory_allocation); return; } assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ job->src = kNullRange; job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); assert(!ZSTD_isError(job->cSize)); assert(job->consumed == 0); } static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) { unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; int const endFrame = (endOp == ZSTD_e_end); if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); return 0; } if (!mtctx->jobReady) { BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); mtctx->jobs[jobID].src.start = src; mtctx->jobs[jobID].src.size = srcSize; assert(mtctx->inBuff.filled >= srcSize); mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; mtctx->jobs[jobID].consumed = 0; mtctx->jobs[jobID].cSize = 0; mtctx->jobs[jobID].params = mtctx->params; mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; mtctx->jobs[jobID].dstBuff = g_nullBuffer; mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; mtctx->jobs[jobID].bufPool = mtctx->bufPool; mtctx->jobs[jobID].seqPool = mtctx->seqPool; mtctx->jobs[jobID].serial = &mtctx->serial; mtctx->jobs[jobID].jobID = mtctx->nextJobID; mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); mtctx->jobs[jobID].lastJob = endFrame; mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); mtctx->jobs[jobID].dstFlushed = 0; /* Update the round buffer pos and clear the input buffer to be reset */ mtctx->roundBuff.pos += srcSize; mtctx->inBuff.buffer = g_nullBuffer; mtctx->inBuff.filled = 0; /* Set the prefix */ if (!endFrame) { size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; mtctx->inBuff.prefix.size = newPrefixSize; } else { /* endFrame==1 => no need for another input buffer */ mtctx->inBuff.prefix = kNullRange; mtctx->frameEnded = endFrame; if (mtctx->nextJobID == 0) { /* single job exception : checksum is already calculated directly within worker thread */ mtctx->params.fParams.checksumFlag = 0; } } if ( (srcSize == 0) && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); mtctx->nextJobID++; return 0; } } DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", mtctx->nextJobID, (U32)mtctx->jobs[jobID].src.size, mtctx->jobs[jobID].lastJob, mtctx->nextJobID, jobID); if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { mtctx->nextJobID++; mtctx->jobReady = 0; } else { DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); mtctx->jobReady = 1; } return 0; } /*! ZSTDMT_flushProduced() : * flush whatever data has been produced but not yet flushed in current job. * move to next job if current one is fully flushed. * `output` : `pos` will be updated with amount of data flushed . * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) { unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", blockToFlush, mtctx->doneJobID, mtctx->nextJobID); assert(output->size >= output->pos); ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); if ( blockToFlush && (mtctx->doneJobID < mtctx->nextJobID) ) { assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); break; } DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ } } /* try to flush something */ { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); if (ZSTD_isError(cSize)) { DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", mtctx->doneJobID, ZSTD_getErrorName(cSize)); ZSTDMT_waitForAllJobsCompleted(mtctx); ZSTDMT_releaseAllJobResources(mtctx); return cSize; } /* add frame checksum if necessary (can only happen once) */ assert(srcConsumed <= srcSize); if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ && mtctx->jobs[wJobID].frameChecksumNeeded ) { U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); cSize += 4; mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ mtctx->jobs[wJobID].frameChecksumNeeded = 0; } if (cSize > 0) { /* compression is ongoing or completed */ size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); assert(mtctx->doneJobID < mtctx->nextJobID); assert(cSize >= mtctx->jobs[wJobID].dstFlushed); assert(mtctx->jobs[wJobID].dstBuff.start != NULL); if (toFlush > 0) { ZSTD_memcpy((char*)output->dst + output->pos, (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, toFlush); } output->pos += toFlush; mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ if ( (srcConsumed == srcSize) /* job is completed */ && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); DEBUGLOG(5, "dstBuffer released"); mtctx->jobs[wJobID].dstBuff = g_nullBuffer; mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ mtctx->consumed += srcSize; mtctx->produced += cSize; mtctx->doneJobID++; } } /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ } if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ return 0; /* internal buffers fully flushed */ } /** * Returns the range of data used by the earliest job that is not yet complete. * If the data of the first job is broken up into two segments, we cover both * sections. */ static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) { unsigned const firstJobID = mtctx->doneJobID; unsigned const lastJobID = mtctx->nextJobID; unsigned jobID; for (jobID = firstJobID; jobID < lastJobID; ++jobID) { unsigned const wJobID = jobID & mtctx->jobIDMask; size_t consumed; ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); consumed = mtctx->jobs[wJobID].consumed; ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); if (consumed < mtctx->jobs[wJobID].src.size) { range_t range = mtctx->jobs[wJobID].prefix; if (range.size == 0) { /* Empty prefix */ range = mtctx->jobs[wJobID].src; } /* Job source in multiple segments not supported yet */ assert(range.start <= mtctx->jobs[wJobID].src.start); return range; } } return kNullRange; } /** * Returns non-zero iff buffer and range overlap. */ static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) { BYTE const* const bufferStart = (BYTE const*)buffer.start; BYTE const* const rangeStart = (BYTE const*)range.start; if (rangeStart == NULL || bufferStart == NULL) return 0; { BYTE const* const bufferEnd = bufferStart + buffer.capacity; BYTE const* const rangeEnd = rangeStart + range.size; /* Empty ranges cannot overlap */ if (bufferStart == bufferEnd || rangeStart == rangeEnd) return 0; return bufferStart < rangeEnd && rangeStart < bufferEnd; } } static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) { range_t extDict; range_t prefix; DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); extDict.start = window.dictBase + window.lowLimit; extDict.size = window.dictLimit - window.lowLimit; prefix.start = window.base + window.dictLimit; prefix.size = window.nextSrc - (window.base + window.dictLimit); DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", (size_t)extDict.start, (size_t)extDict.start + extDict.size); DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", (size_t)prefix.start, (size_t)prefix.start + prefix.size); return ZSTDMT_isOverlapped(buffer, extDict) || ZSTDMT_isOverlapped(buffer, prefix); } static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) { if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) { ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); DEBUGLOG(5, "source [0x%zx, 0x%zx)", (size_t)buffer.start, (size_t)buffer.start + buffer.capacity); ZSTD_PTHREAD_MUTEX_LOCK(mutex); while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { DEBUGLOG(5, "Waiting for LDM to finish..."); ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); } DEBUGLOG(6, "Done waiting for LDM to finish"); ZSTD_pthread_mutex_unlock(mutex); } } /** * Attempts to set the inBuff to the next section to fill. * If any part of the new section is still in use we give up. * Returns non-zero if the buffer is filled. */ static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) { range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; size_t const target = mtctx->targetSectionSize; buffer_t buffer; DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); assert(mtctx->inBuff.buffer.start == NULL); assert(mtctx->roundBuff.capacity >= target); if (spaceLeft < target) { /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. * Simply copy the prefix to the beginning in that case. */ BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; size_t const prefixSize = mtctx->inBuff.prefix.size; buffer.start = start; buffer.capacity = prefixSize; if (ZSTDMT_isOverlapped(buffer, inUse)) { DEBUGLOG(5, "Waiting for buffer..."); return 0; } ZSTDMT_waitForLdmComplete(mtctx, buffer); ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); mtctx->inBuff.prefix.start = start; mtctx->roundBuff.pos = prefixSize; } buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; buffer.capacity = target; if (ZSTDMT_isOverlapped(buffer, inUse)) { DEBUGLOG(5, "Waiting for buffer..."); return 0; } assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); ZSTDMT_waitForLdmComplete(mtctx, buffer); DEBUGLOG(5, "Using prefix range [%zx, %zx)", (size_t)mtctx->inBuff.prefix.start, (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); DEBUGLOG(5, "Using source range [%zx, %zx)", (size_t)buffer.start, (size_t)buffer.start + buffer.capacity); mtctx->inBuff.buffer = buffer; mtctx->inBuff.filled = 0; assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); return 1; } typedef struct { size_t toLoad; /* The number of bytes to load from the input. */ int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ } syncPoint_t; /** * Searches through the input for a synchronization point. If one is found, we * will instruct the caller to flush, and return the number of bytes to load. * Otherwise, we will load as many bytes as possible and instruct the caller * to continue as normal. */ static syncPoint_t findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) { BYTE const* const istart = (BYTE const*)input.src + input.pos; U64 const primePower = mtctx->rsync.primePower; U64 const hitMask = mtctx->rsync.hitMask; syncPoint_t syncPoint; U64 hash; BYTE const* prev; size_t pos; syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); syncPoint.flush = 0; if (!mtctx->params.rsyncable) /* Rsync is disabled. */ return syncPoint; if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE) /* We don't emit synchronization points if it would produce too small blocks. * We don't have enough input to find a synchronization point, so don't look. */ return syncPoint; if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) /* Not enough to compute the hash. * We will miss any synchronization points in this RSYNC_LENGTH byte * window. However, since it depends only in the internal buffers, if the * state is already synchronized, we will remain synchronized. * Additionally, the probability that we miss a synchronization point is * low: RSYNC_LENGTH / targetSectionSize. */ return syncPoint; /* Initialize the loop variables. */ if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) { /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions * because they can't possibly be a sync point. So we can start * part way through the input buffer. */ pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled; if (pos >= RSYNC_LENGTH) { prev = istart + pos - RSYNC_LENGTH; hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); } else { assert(mtctx->inBuff.filled >= RSYNC_LENGTH); prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos)); hash = ZSTD_rollingHash_append(hash, istart, pos); } } else { /* We have enough bytes buffered to initialize the hash, * and are have processed enough bytes to find a sync point. * Start scanning at the beginning of the input. */ assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE); assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH); pos = 0; prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); if ((hash & hitMask) == hitMask) { /* We're already at a sync point so don't load any more until * we're able to flush this sync point. * This likely happened because the job table was full so we * couldn't add our job. */ syncPoint.toLoad = 0; syncPoint.flush = 1; return syncPoint; } } /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll * through the input. If we hit a synchronization point, then cut the * job off, and tell the compressor to flush the job. Otherwise, load * all the bytes and continue as normal. * If we go too long without a synchronization point (targetSectionSize) * then a block will be emitted anyways, but this is okay, since if we * are already synchronized we will remain synchronized. */ for (; pos < syncPoint.toLoad; ++pos) { BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE); if ((hash & hitMask) == hitMask) { syncPoint.toLoad = pos + 1; syncPoint.flush = 1; break; } } return syncPoint; } size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) { size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; if (hintInSize==0) hintInSize = mtctx->targetSectionSize; return hintInSize; } /** ZSTDMT_compressStream_generic() : * internal use only - exposed to be invoked from zstd_compress.c * assumption : output and input are valid (pos <= size) * @return : minimum amount of data remaining to flush, 0 if none */ size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { unsigned forwardInputProgress = 0; DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", (U32)endOp, (U32)(input->size - input->pos)); assert(output->pos <= output->size); assert(input->pos <= input->size); if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { /* current frame being ended. Only flush/end are allowed */ return ERROR(stage_wrong); } /* fill input buffer */ if ( (!mtctx->jobReady) && (input->size > input->pos) ) { /* support NULL input */ if (mtctx->inBuff.buffer.start == NULL) { assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ if (!ZSTDMT_tryGetInputRange(mtctx)) { /* It is only possible for this operation to fail if there are * still compression jobs ongoing. */ DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); assert(mtctx->doneJobID != mtctx->nextJobID); } else DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); } if (mtctx->inBuff.buffer.start != NULL) { syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); if (syncPoint.flush && endOp == ZSTD_e_continue) { endOp = ZSTD_e_flush; } assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); input->pos += syncPoint.toLoad; mtctx->inBuff.filled += syncPoint.toLoad; forwardInputProgress = syncPoint.toLoad>0; } } if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { /* Can't end yet because the input is not fully consumed. * We are in one of these cases: * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. * - We filled the input buffer: flush this job but don't end the frame. * - We hit a synchronization point: flush this job but don't end the frame. */ assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); endOp = ZSTD_e_flush; } if ( (mtctx->jobReady) || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ size_t const jobSize = mtctx->inBuff.filled; assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); } /* check for potential compressed data ready to be flushed */ { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); return remainingToFlush; } } #endif /* USE_EXTERNAL_ZSTD */